1887

Abstract

Summary

Carbenicillin resistance in strains of isolated in Britain is mediated more frequently by “intrinsic factors” than by β-lactamase production. Intrinsically carbenicillin-resistant isolates almost invariably were more resistant to azlocillin, cefoperazone, cefotaxime, ceftazidime, chloramphenicol, tetracycline and nalidixic acid than were carbenicillin-susceptible strains. This crossresistance to different classes of antimicrobials suggested an impermeability-based mechanism of resistance, perhaps involving the outer membrane. The structure and composition of the outer membrane of the pseudomonas cell also influences the Oserotype specificity and the susceptibility to many bacteriophages. We therefore examined these properties for possible relationships to antibiotic resistance. Carbenicillin-resistant (122) and -sensitive (127) strains from 24 hospitals were compared. Serotype O:1, O:3, O:6, O:10 and O:11 strains predominated in both groups. Non-typable and polyagglutinating strains were infrequent in both groups. With one possible exception, none of 18 bacteriophages showed a significant preference for carbenicillin-resistant or -sensitive strains. Variation between strains was observed in the electrophoretic profile of LPS and this could be related in part to serotype, but not to antibiotic resistance. Our results contrast with those of earlier small-scale studies which have claimed relationships between surface properties and antibiogram in , and suggest that interpretation of the minor changes in LPS sometimes observed in association with the development of antibiotic resistance requires caution.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-22-3-217
1986-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/22/3/medmicro-22-3-217.html?itemId=/content/journal/jmm/10.1099/00222615-22-3-217&mimeType=html&fmt=ahah

References

  1. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M. B., HancockR E. W. 1982; Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrobial Agents andChemotherapy 21:299–309
    [Google Scholar]
  2. Asheshov E. H. 1974; An assessment of the methods used for typing strains of Pseudomonas aeruginosa . In Arseni A. (ed) Proceedings of the sixth national congress of bacteriology Leontiadi Medical Editions; Athens: pp 9–22
    [Google Scholar]
  3. Bergan T. 1975; Epidemiological typing of Pseudomonas aeruginosa . In Brown M. R. W. (ed) Resistance of Pseudomonas aeruginosa John Wiley and Sons; London: pp 189–235
    [Google Scholar]
  4. Chester I. R., Meadow P. M., Pitt T. L. 1973; The relationships between the O-antigenic lipopolysaccharides and serological specificity in strains of Pseudomonas aeruginosa of different O-serotypes. Journal of General Microbiology 78:305–318
    [Google Scholar]
  5. Darveau R. P., Hancock R. E. W. 1983; Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. Journal of Bacteriology 155:831–838
    [Google Scholar]
  6. Godfrey A. J., Hatlelid L., Bryan L. E. 1984; Correlation between lipopolysaccharide structure and permeability resistance in β-lactam-resistant Pseudomonas aeruginosa . AntimicrobialAgents and Chemotherapy 26:181–186
    [Google Scholar]
  7. Hancock R. E. W. 1984; Alterations in outer membrane permeability. Annual Review of Microbiology 38:237–264
    [Google Scholar]
  8. Hitchcock P. J., Brown T. M. 1983; Morphological heterogenicity among Salmonella lipopolysaccharide chemotypes in silver stained polyacrylamide gels. Journal of Bacteriology 154:269–277
    [Google Scholar]
  9. Koval S. F., Meadow P. M. 1977; The isolation and characterization of lipopolysaccharide-defective mutants of Pseudomonas aeruginosa PAC1. Journal of General Microbiology 98:387–398
    [Google Scholar]
  10. Kropinski A. M., Kuzio J., Angus B. L., R E. W. 1982; Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant ofPseudomonas aeruginosa . Antimicrobial Agents andChemotherapy 21:310–319
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  12. Legakis N. J., Aliferopoulou M., Papavassiliou J., Papapetropou-lou M. 1982; Serotypes of Pseudomonas aeruginosa in clinical specimens in relation to antibiotic susceptibility. Journal of Clinical Microbiology 16:458–463
    [Google Scholar]
  13. Liu P. V., Matsumoto H., Kusama H., Bergan T. 1983; Survey of heat stable, major somatic antigens of Pseudomonas aeruginosa . International Journal of Systematic Bacteriology 33:256–264
    [Google Scholar]
  14. Livermore D. M. 1984; Penicillin-binding proteins, porins and outer-membrane permeability of carbenicillin-resistant and -susceptible strains of Pseudomonas aeruginosa . Journal of Medical Microbiology 18:261–270
    [Google Scholar]
  15. Meadow P. M., Wells P. L. 1985; Antibiotic sensitivity in lipopolysaccharide defective mutants of Pseudomonas aeruginosa . In Daikos G. K., Giamarellou H. (eds) Fourth Mediterranean congress of chemotherapy: Proceedings Chemioterapia 4: (Suppl) 5–7
    [Google Scholar]
  16. Mutharia L. M., Nicas T. I., Hancock R. E. W. 1982; Outermembrane proteins of Pseudomonas aeruginosa serotype strains. Journal of Infectious Diseases 146:770–779
    [Google Scholar]
  17. Nikaido H., Vaara M. 1985; Molecular basis of bacterial outer membrane permeability. Microbiological Reviews 49:1–32
    [Google Scholar]
  18. Noguchi H., Fukasawa M., Komatsu T., Iyobe S., Mitsuhashi S. 1980; Isolation of two types of Pseudomonas aeruginosa mutants highly sensitive to a specific group of beta-lactam antibiotics and with defect in penicillin-binding proteins. Journal of Antibiotics 33:1521–1526
    [Google Scholar]
  19. Palva E. T., P H. 1980; Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis. European Journal of Biochemistry 107:137–143
    [Google Scholar]
  20. Pitt T. L. 1981; A comparison of flagellar typing and phage typing as means of subdividing the O groups of Pseudomonas aeruginosa . Journal of Medical Microbiology 14:261–270
    [Google Scholar]
  21. Rella M., Haas D. 1982; Resistance of Pseudomonas aeruginosaPAO to nalidixic acid and low levels of B-lactam antibiotics: mapping of chromosomal genes. AntimicrobialAgents and Chemotherapy 22:242–249
    [Google Scholar]
  22. Shearer B. G., Legakis N. J. 1985; Pseudomonas aeruginosa:evidence for the involvement of lipopolysaccharide in determining outer membrane permeability to carbenicillin and gentamicin. Journal of Infectious Diseases 152:351–355
    [Google Scholar]
  23. Slack M. P. E., Pitt T. L. 1982; Characterization of cefsulodin-resistant variants of Pseudomonas aeruginosa . Journal ofAntimicrobial Chemotherapy 9:111–117
    [Google Scholar]
  24. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  25. Veron M. 1961; Sur l’agglutination de Pseudomonas aeruginosa:subdivision des groupes antigeniques O:2 et O:5. Annalesde L’Institut Pasteur 101:456–460
    [Google Scholar]
  26. Williams R. J., Lindridge M. A., Said A. A., Livermore D. M., Williams J. D. 1984a; National survey of antibiotic resistance in Pseudomonas aeruginosa . Journal of AntimicrobialChemotherapy 14:9–16
    [Google Scholar]
  27. Williams R. J., Livermore D. M., Lindridge M. A., Said A. A., Williams J. D. 1984b; Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa . Journal ofMedical Microbiology 17:283–293
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-22-3-217
Loading
/content/journal/jmm/10.1099/00222615-22-3-217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error