1887

Abstract

Summary

Human lactoferrin (HLf) is an iron-binding protein and a host-defence component at the mucosal surface. Recently, a specific receptor for HLf has been identified on a strain of associated with toxic shock syndrome. We have looked for the occurrence of I-HLf binding among 489 strains of isolated from various clinical sources. HLf binding was common among strains associated with furunculosis (94.3%), toxic shock syndrome (94.3%) endocarditis (83.3%) and septicaemia (82.8%) and other (nasal, vaginal or ocular) infections (96.1%) with a mean binding (in fmol) of 29.1, 21.9, 16.9, 22.2 and 29.2 respectively; the differences between mean HLf binding values of 29.1–29.2, 21.9–22.2 and 16.9 were significant. Furunculosis-associated (low-invasive or localised) isolates were high-to-moderate binders of HLf; 50% gave positive results at a threshold of≫31 fmol of I-HLf bound. In contrast, endocarditis-associated (high-invasive or systemic) isolates demonstrated low binding and did not bind I-HLf at the above threshold level. recognised human or bovine Lf. However, boundI-HLf was more effectively inhibited in a dose-dependent manner by unlabelled bovine Lf than by homologous HLf. Binding of I-HLf to staphylococci was optimal with organisms grown in agar compared with those from broth cultures. The binding capacity of was abolished when strains were grown on carbohydrate- and salt-rich agar media. HLf-binding ability of did not correlate with fibronectin, fibrinogen, immunoglobulin G or laminin binding.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-6-323
1991-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/6/medmicro-34-6-323.html?itemId=/content/journal/jmm/10.1099/00222615-34-6-323&mimeType=html&fmt=ahah

References

  1. Neilands J. B. Microbial iron compounds. Annu Rev Biochem 1981; 50:715–731
    [Google Scholar]
  2. Weinberg E. D. Iron and infection. Microbiol Rev 1978; 42:45–66
    [Google Scholar]
  3. Bullen J. J. The significance of iron in infection. Rev Infect Dis 1981; 3:1127–1138
    [Google Scholar]
  4. Theodore T. S., Schade A. L. Growth of Staphylococcus aureus in media of restricted and unrestricted inorganic iron availability. J Gen Microbiol 1965; 39:75–83
    [Google Scholar]
  5. Freer J. H., Arbuthnott J. P. Toxins of Staphylococcus aureus. In Domer F, Drews T. (eds) Pharmacology of bacterial toxins (International encyclopaedia of pharmacology and therapeutics 119 London: Pergamon Press; 1986581–633
    [Google Scholar]
  6. Marcelis J. H., Den Daas-Slagt H. J., Hoogkamp-Korstanje JAA. Iron requirement and chelator production of staphylococci, Streptococcus faecalis, and Enterobacteriaceae. Antonie van Leeuwenhoek 1978; 44:257–267
    [Google Scholar]
  7. Lehrer R. I., Ganz T., Selsted M. E., Babior B. M., Curnutte J. T. Neutrophils and host defense. Ann Intern Med 1988; 109:127–142
    [Google Scholar]
  8. Lerche A., Bisgaard H., Christensen J. D., Venge P., Dahl R, Sondergaard J. Lactoferrin, myeloperoxidase, lysozyme and eosinophil cationic protein in exudate in delayed type hypersensitivity. Allergy 1988; 43:139–145
    [Google Scholar]
  9. Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron binding protein in neutrophilic leukocytes. J Exp Med 1969; 130:643–658
    [Google Scholar]
  10. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science 1977; 197:263–265
    [Google Scholar]
  11. Masson P. L., Heremans J. F., Prignot J. J., Wauters G. Immuno-histochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 1966; 21:538–544
    [Google Scholar]
  12. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968; 170:351–365
    [Google Scholar]
  13. Gutteberg T. J., Rokke O., Andersen O, Jorgensen T. Early fall of circulating iron and rapid rise of lactoferrin in septicemia and endotoxaemina: an early defence mechanism. Scand J Infect Dis 1989; 21:709–715
    [Google Scholar]
  14. van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med 1974; 140:1068–1084
    [Google Scholar]
  15. Chesney P. J. Clinical aspects and spectrum of illness of toxic shock syndrome: overview. Rev Infect Dis 1989; 11: Suppl 1S1–S7
    [Google Scholar]
  16. Bennett R. M., Kokocinski T. H. Lactoferrin turnover in man. Clin Sci 1979; 57:453–460
    [Google Scholar]
  17. Oseas R., Yang H.-H., Baehner R. L., Boxer L. A. Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood 1981; 57:939–945
    [Google Scholar]
  18. Baggiolini M., de Duve C., Masson P. L., Heremans J. F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med 1970; 131:559–570
    [Google Scholar]
  19. Broxmeyer H. E., Platzer E. Lactoferrin acts on I-A and I-E/C antigen + subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro. J Immunol 1984; 133:306–314
    [Google Scholar]
  20. Broxmeyer H. E., Juliano L., Waheed A., Shadduck R. K. Release from mouse macrophages of acidic isoferritins that suppress hematopoietic progenitor cells is induced by purified L cell colony stimulating factor and suppressed by human lactoferrin. J Immunol 1985; 135:3224–3231
    [Google Scholar]
  21. Ambruso D. R., Johnston R. B. Lactoferrin enhances hydroxyl radicle production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J Clin Invest 1981; 67:352–360
    [Google Scholar]
  22. De Vet B. J. C. M., ten Hoopen C. H. Lactoferrin in human neutrophilic polymorphonuclear leukocytes in relation to iron metabolism. Acta Med Scand 1978; 203:197–203
    [Google Scholar]
  23. Broxmeyer H. E., Smithyman A., Eger R. R., Meyers P. A., De Sousa M. Identification of lactoferrin as the granulocyte-derived inhibitor of colony-stimulating activity production. J Exp Med 1978; 148:1052–1067
    [Google Scholar]
  24. Van Snick J. L., Masson P. L. The binding of human lactoferrin to mouse peritoneal cells. J Exp Med 1976; 144:1568–1580
    [Google Scholar]
  25. Bennett R. M., Davis J. Lactoferrin binding to human peripheral blood cells: an interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J Immunol 1981; 127:1211–1216
    [Google Scholar]
  26. Maneva A. I., Sirakov L. M., Manev V. V. Lactoferrin binding to neutrophilic polymorphonuclear leucocytes. Int J Biochem 1983; 15:981–984
    [Google Scholar]
  27. Naidu A. S., Jimenez J., Rollof J. Crystal violet binding, cell surface properties and extracellular enzyme profiles of Staphylococcus aureus producing toxic shock syndrome toxin-1. . Zentralbl Bakteriol Mikrobiol Hyg [A] 1989; 271:11–21
    [Google Scholar]
  28. Frimodt-Moller N, Espersen F., Gutschik E, Rosendal K., Jessen O. Staphylococcus aureus endocarditis in Denmark 1976−1981. Scand J Infect Dis 1983; 41: Suppl 30–35
    [Google Scholar]
  29. Musser J. M., Schlievert P. M., Chow A. W. A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proc Natl Acad Sci USA 1990; 87:225–229
    [Google Scholar]
  30. Naidu A. S., Kamme C., Ljungh A., Wadstrom T. Levels of toxic shock syndrome toxin-1 production among Staphylococcus aureus and clinical implications. Zentralbl Bakteriol Mikrobiol Hyg [A] 1989; 270:337–344
    [Google Scholar]
  31. Veunto M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J 1979; 183:331–337
    [Google Scholar]
  32. Markwell M. A. K. A new solid state-reagent to iodinate proteins. Anal Biochem 1982; 125:427–432
    [Google Scholar]
  33. Naidu A. S., Ekstrand J., Wadstrom T. Binding of type I and type II collagens to Staphylococcus aureus isolated from patients with toxic shock syndrome compared to other staphylococcal infections. FEMS Microbiol Immunol 1989; 47:219–228
    [Google Scholar]
  34. Naidu A. S., Miedzobrodzki J., Andersson M., Nilsson L.-E., Forsgren A., Watts J. L. Bovine lactoferrin binding to six species of coagulase-negative staphylococci isolated from bovine intramammary infections. J Clin Microbiol 1990; 28:2312–2319
    [Google Scholar]
  35. Masson P. L., Heremans J. F., Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966; 14:735–739
    [Google Scholar]
  36. Arnold R. R., Russell J. E., Champion W. J., Gauthier J. J. Bacteri cidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism. Infect Immun 1981; 32:655–660
    [Google Scholar]
  37. Naidu S., Rajyalakshmi K., Naidu A. S. Risk involvement with Staphylococcus aureus exotoxins among pyogenic skin infections with special reference to toxic shock syndrome. Acta Microbiol Hung 1989; 36:7–12
    [Google Scholar]
  38. Espersen F., Frimodt-Moller N. Staphylococcus aureus endocarp ditis. A review of 119 cases. Arch Intern Med 1986; 146:1118–1121
    [Google Scholar]
  39. Izhar M., Nuchamowitz Y., Mirelman D. Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesin. Infect Immun 1982; 35:1110–1118
    [Google Scholar]
  40. Masson P. L., Heremans J. F. Lactoferrin in milk from different species. Comp Biochem Physiol 1971; 39:119–129
    [Google Scholar]
  41. Metz-Boutique M-H, Jolles J., Mazurier J. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 1984; 145:659–676
    [Google Scholar]
  42. Querinjean P., Masson P. L., Heremans J. F. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem 1971; 20:420–425
    [Google Scholar]
  43. Schryvers A. B., Morris L. J. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 1988; 56:1144–1149
    [Google Scholar]
  44. Rao P. N., Naidu A. S., Rao P. R., Rajyalakshmi K. Prevalence of staphylococcal zoonosis in staphylococcal pyogenic skin infections. Zentralbl Bakteriol Mikrobiol Hyg [A] 1987; 265:218–226
    [Google Scholar]
  45. Miedzobrodzki J., Naidu A. S., Watts J. L., Ciborowski P., Palm K., Wadstrom T. Effect of milk on fibronectin and collagen type I binding to Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. J Clin Microbiol 1989; 27:540–544
    [Google Scholar]
  46. Naidu A. S., Paulsson M., Wadstrom T. Particle agglutination assays for the rapid detection of fibronectin, fibrinogen, and collagen receptors on Staphylococcus aureus. J Clin Microbiol 1988; 26:1549–1554
    [Google Scholar]
  47. Cheung A. L., Fischetti V. A. Variation in the expression of cell wall proteins of Staphylococcus aureus grown on solid and liquid media. Infect Immun 1988; 56:1061–1065
    [Google Scholar]
  48. Brock J. H., Reiter B. Chemical and biological properties of extracellular slime produced by Staphylococcus aureus grown in high carbohydrate, high salt medium. Infect Immun 1976; 13:653–660
    [Google Scholar]
  49. Höök M, Switalski L. M., Wadstrom T., Lindberg M. Interactions of pathogenic microorganisms with fibronectin. In Mosher D. F. (ed) Fibronectin San Diego: Academic Press; 1989295–308
    [Google Scholar]
  50. Wadström T. Molecular aspects of pathogenesis of wound and foreign body infections due to staphylococci. Zentralbl Bakteriol Mikrobiol Hyg [A] 1987; 266:191–211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-6-323
Loading
/content/journal/jmm/10.1099/00222615-34-6-323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error