1887

Abstract

Summary

Although can use haem as the sole exogenous iron source for growth , the mechanism of haem-iron uptake in the gonococcus is unknown. Two haemin-binding proteins (HmBPs) of 97 and 44 Kda were isolated by batch ligand affinitychromatography from whole cells or total membranes of gonococci grown under iron-limited conditions but not from those grown under iron-sufficient conditions. Competition binding experiments indicated that the haemin-protein interaction was specific; only haemin or haem-containing proteins, such as human haemoglobin or equine cytochrome c, but not protoporphyrin IX, iron loaded human transferrin or lactoferrin, could abrogate binding. Identical HmBPs were isolated from three other clinical gonococcal strains, suggesting that these may be interstrain structural and functional homogeneity amongst these polypeptides.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-2-121
1992-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/2/medmicro-36-2-121.html?itemId=/content/journal/jmm/10.1099/00222615-36-2-121&mimeType=html&fmt=ahah

References

  1. Bullen J. J. The significance of iron in infection. Rev Infect Dis 1981; 3:1127–1138
    [Google Scholar]
  2. Finkelstein R. A., Sciortino C. V., McIntosh M. A. Role of iron in microbe host interactions. Rev Infect Dis 1983; 5: Suppl 4S759–S777
    [Google Scholar]
  3. Weinberg E. D. Iron withholding: a defense against infection and neoplasia. Physiol Rev 1984; 64:65–102
    [Google Scholar]
  4. Neilands J. B. Microbial envelope proteins related to iron. Annu Rev Microbiol 1982; 36:285–309
    [Google Scholar]
  5. West S. E. H., Sparling P. F. Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 1985; 47:388–394
    [Google Scholar]
  6. Lee B. C., Schryvers A. B. Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol Microbiol 1988; 2:827–829
    [Google Scholar]
  7. Lee B. C., Bryan L. E. Identification and comparative analysis of the lactoferrin and transferrin receptors among clinical isolates of gonococci. J Med Microbiol 1989; 28:199–204
    [Google Scholar]
  8. Dyer D. W., West E. P., Sparling P. F. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect Immun 1987; 55:2171–2175
    [Google Scholar]
  9. Mickelsen P. A., Sparling P. F. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun 1981; 33:555–564
    [Google Scholar]
  10. Shockley R. K., Coffee E. E., Johnston K. H. SJ-GC, a modified complete medium for the growth of Neisseria gonorrhoeae. J Clin Microbiol 1980; 12:35–38
    [Google Scholar]
  11. Godfrey A. J., Hatletid L., Bryan L. E. Correlation between lipopolysaccharide structure and permeability resistance in β-lactam-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 26:181–186
    [Google Scholar]
  12. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol 1988; 2:281–288
    [Google Scholar]
  13. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin reagent. J Biol Chem 1951; 193:265–275
    [Google Scholar]
  14. O’Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. A novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1972; 1:283–288
    [Google Scholar]
  15. Stugard C. E., Daskaleros P. A., Payne S. M. A 101-kilodalton heme-binding protein associated with Congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun 1989; 57:3534–3539
    [Google Scholar]
  16. Delepelaire P. A., Chua N.-H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 °C; characterisations of two additional cholorophylla-protein complexes. Proc Natl Acad Set USA 1979; 76:111–115
    [Google Scholar]
  17. Holland V. R., Saunders B. C., Rose F. L., Walpole A. L. A safer substitute for benzidine in the detection of blood. Tetrahedron 1974; 30:3299–3302
    [Google Scholar]
  18. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 1976; 75:168–176
    [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  20. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 1980; 105:361–363
    [Google Scholar]
  21. Kahn C. R. Membrane receptors for hormones and neurotrans mitters. J Cell Biol 1976; 70:261–286
    [Google Scholar]
  22. Meyer T. E., Cusanovich M. A. Structure, function and distribution of soluble bacterial redox proteins. Biochim Biophys Acta 1989; 975:1–28
    [Google Scholar]
  23. Gräsbeck R., Kouvonen I., Lundberg M., Tenhunen R. An intestinal receptor for heme. Scand J Haematol 1979; 23:5–9
    [Google Scholar]
  24. Smith A., Morgan W. T. Hemopexin-mediated heme uptake by liver. J Biol Chem 1984; 259:12049–12053
    [Google Scholar]
  25. Galbraith R. A., Sassa S., Kappas A. Heme binding to murine erythroleukemia cells. J Biol Chem 1985; 260:12198–12202
    [Google Scholar]
  26. Galbraith R. A., McElrath M. J. Heme binding to Leishmania mexicana amazonensis. Mol Biochem Parasitol 1988; 29:47–54
    [Google Scholar]
  27. Kay W. W., Phipps B. M., Ishiguro E. E., Trust T. J. Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida. J Bacteriol 1985; 164:1332–1336
    [Google Scholar]
  28. Schryvers A. B., Morris L. J. Identification and characterization of the lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 1988; 56:1144–1149
    [Google Scholar]
  29. Schryvers A. B. Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 1989; 29:121–130
    [Google Scholar]
  30. Coulton J. W., Pang J. C. S. Transport of haemin by Haemophilus influenzae type. b. Curr Microbiol 1983; 9:93–98
    [Google Scholar]
  31. Stull T. L. Protein sources of heme for Haemophilus influenzae. Infect Immun 1987; 55:148–153
    [Google Scholar]
  32. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. Iron acquisition by Haemophilus influenzae. Infect Immun 1988; 56:721–725
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-2-121
Loading
/content/journal/jmm/10.1099/00222615-36-2-121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error