1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-39-2-93
1993-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/39/2/medmicro-39-2-93.html?itemId=/content/journal/jmm/10.1099/00222615-39-2-93&mimeType=html&fmt=ahah

References

  1. Sabath LD, Abraham EP. Zinc as a cofactor for cephalo-sporinase activity from Bacillus cereus 569. Biochem J 1966; 98:llc–13c
    [Google Scholar]
  2. Sato K, Fujii T, Okamoto R, Inoue M, Mitsuhashi S. Biochemical properties of β-lactamase produced by Flavo-bacterium odoratum. Antimicrob Agents Chemother 1985; 27:612–614
    [Google Scholar]
  3. Abraham EP, Waley SG. β-lactamases from Bacillus cereus. In: Hamilton-Miller JMT, Smith JT. (eds) Beta-lactamases London: Academic Press; 1979311–338
    [Google Scholar]
  4. Fujii T, Sato K, Miyata K, Inoue M, Mitsuhashi S. Biochemical properties of β-lactamase produced by Legionella gormanii. Antimicrob Agents Chemother 1986; 29:925–926
    [Google Scholar]
  5. Sutton BJ, Artymiuk PJ, Cordero-Borboa AE, Little C, Phillips DC, Waley SG. An X-ray-crystallographic study of β-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J 1987; 248:181–188
    [Google Scholar]
  6. Davies RB, Abraham EP. Metal cofactor requirements of β-lactamase II. Biochem J 1974; 143:129–135
    [Google Scholar]
  7. Baldwin GS, Galdes A, Hill HAO, Smith BE, Waley SG, Abraham EP. Histidine residues as zinc ligands in β-lactamase II. Biochem J 1978; 175:441–447
    [Google Scholar]
  8. Hussain M, Carlino A, Madonna MJ, Lampen JO. Cloning and sequencing of the metallothioprotein β-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J Bacteriol 1985; 164:223–229
    [Google Scholar]
  9. Ambler RP, Daniel M, Fleming J, Hermoso J-M, Pang C, Waley SG. The amino acid sequence of the zinc-requiring β-lactamase II from the bacterium Bacillus cereus 569. FEBS Letts 1986; 189:207–211
    [Google Scholar]
  10. Little C, Emanuel EL, Gagnon J, Waley SG. Identification of an essential glutamic acid residue in β-lactamase II from Bacillus cereus. Biochem J 1986; 233:465–469
    [Google Scholar]
  11. Lim HM, Pene JJ. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 β-lactamase II. J. Biol Chem 1989; 264:11682–11687
    [Google Scholar]
  12. Lim HM, Iyer RK, Pène JJ. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5. /B/6 β-lactamase II. Biochem J 1991; 276:401–404
    [Google Scholar]
  13. Davies RB, Abraham EP, Fleming J, Pollock MR. Comparison of β-lactamase II from Bacillus cereus 569/H/9 with a β-lactamase from Bacillus cereus 5/B/6. Biochem J 1975; 145:409–411
    [Google Scholar]
  14. Lim HM, Pène JJ, Shaw RW. Cloning, nucleotide sequence, and expression of the Bacillus cereus 5/B/6 β-lactamase II structural gene. J Bacteriol 1988; 170:2873–2878
    [Google Scholar]
  15. Bicknell R, Emanuel EL, Gagnon J, Waley SG. The production and molecular properties of the zinc β-lactamase of Pseudomonas maltophilia IID 1275. Biochem J 1985; 229:791–797
    [Google Scholar]
  16. Saino Y, Kobayashi F, Inoue M, Mitsuhashi S. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother 1982; 22:564–570
    [Google Scholar]
  17. Bandoh K, Muto Y, Watanabe K, Katoh N, Ueno K. Biochemical properties and purification of metallo-β-lactamase from Bacteroides fragilis. Antimicrob Agents Chemother 1991; 35:371–372
    [Google Scholar]
  18. Ajiki Y, Koga T, Ohya S et al. β-lactamase produced by a highly β-lactam resistant strain of Bacteroides fragilis: an obstacle to the chemotherapy of experimental mixed infections. J Antimicrob Chemother 1991; 28:537–546
    [Google Scholar]
  19. Podglajen I, Breuil J, Bordon F, Gutmann L, Collatz E. A silent carbapenemase gene in strains of Bacteroides fragilis can be expressed after a one-step mutation. FEMS Microbiol Letts 1991; 91:21–30
    [Google Scholar]
  20. Yotsuji A, Minami S, Inoue M, Mitsuhashi S. Properties of novel β-lactamase produced by Bacteroides fragilis. Antimicrob Agents Chemother 1983; 24:925–929
    [Google Scholar]
  21. Eley A, Greenwood D. Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem. J Med Microbiol 1986; 21:49–57
    [Google Scholar]
  22. Nord CE, Caceres M, Hedberg M, Lindqvist L. Purification and characterisation of a novel beta-lactamase from the Bacteroides fragilis Group. 17th International Congress of Chemotherapy Berlin 1991: abstract no. 1167
    [Google Scholar]
  23. Cuchural GJ, Malamy MH, Tally FP. β-3actamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother 1986; 30:645–648
    [Google Scholar]
  24. Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B β-lactamase gene (ccrA) from Bacteroides fragilis TAL 3636. Antimicrob Agents Chemother 1990; 34:1590–1592
    [Google Scholar]
  25. Thompson JS, Malamy MH. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β-lactamase II. J Bacteriol 1990; 172:2584–2593
    [Google Scholar]
  26. Rasmussen BA, Gluzman Y, Tally FP. Escherichia coli chromo somal mutations that permit direct cloning of the Bacteroides fragilis metallo-β-lactamase gene, ccrA. Mol Microbiol 1991; 5:1211–1219
    [Google Scholar]
  27. Shannon K, King A, Phillips I. β-lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. J Antimicrob Chemother 1986; 17:45–50
    [Google Scholar]
  28. Bakken JS, Sanders CC, Clarke RB, Hori M. β-lactam resistance in Aeromonas spp. caused by inducible β-lactamases active against penicillins, cephalosporins and carbapenems. Antimicrob Agents Chemother 1988; 32:1314–1319
    [Google Scholar]
  29. Iaconis JP, Sanders CC. Purification and characterization of inducible β-lactamases in Aeromonas. spp. Antimicrob Agents Chemother 1990; 34:44–51
    [Google Scholar]
  30. Massidda O, Rossolini GM, Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo- β-lactamases. J Bacteriol 1991; 173:4611–4617
    [Google Scholar]
  31. Yang Y, Wu P, Livermore DM. Biochemical characterization of a β-lactamase that hydrolyses penems and carbapenems from two marcescens isolates. Antimicrob Agents Chemother 1990; 34:755–758
    [Google Scholar]
  32. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lon[Biol\ 1980; 289:321–331
    [Google Scholar]
  33. Akesson A, Hedstrom SA, Ripa T. Bacillus cereus: a significant pathogen in postoperative and post-traumatic wounds on orthopaedic wards. Scand J Infect Dis 1991; 23:71–77
    [Google Scholar]
  34. Dancer SJ. A hospital outbreak of infection with Bacillus spp. associated with a building site. J Med Microbiol 1991; 34:v
    [Google Scholar]
  35. Cullmann W, Dick W. Heterogeneity of beta-lactamase pro duction in Pseudomonas maltophilia, a nosocomial pathogen. Chemotherapy 1990; 36:117–126
    [Google Scholar]
  36. Cullmann W. Antibiotic susceptibility and outer membrane proteins of clinical Xanthomonas maltophilia isolates. Chemotherapy 1991; 37:246–250
    [Google Scholar]
  37. García-Rodriguez JA, García Sánchez JE, Garcia Garcia MI, Garcia Sanchez E, Munoz Bellido JL. Antibiotic susceptibility profile of Xanthomonas maltophilia. In vitro activity of beta-lactam/beta-lactamase inhibitor combinations. Diagn Microbiol Infect Dis 1991; 14:239–243
    [Google Scholar]
  38. Hohl P, Frei R, Aubry P. In vitro susceptibility of 33 clinical isolates of Xanthomonas maltophilia; inconsistent correlation of agar dilution and of disk diffusion test results. Diagn Microbiol Infect Dis 1991; 14:447–450
    [Google Scholar]
  39. Khardori N, Elting L, Wong E, Schable B, Bodey GP. Nosocomial infections due to Xanthomonas maltophilia {Pseudomonas maltophilia) in patients with cancer. Rev Infect Dis 1990; 12:997–1003
    [Google Scholar]
  40. Neu HC, Saha G, Chin NX. Resistance of Xanthomonas maltophilia to antibiotics and the effect of beta-lactamase inhibitors. Diagn Microbiol Infect Dis 1989; 12:283–285
    [Google Scholar]
  41. Muder RR, Yu VL, Dummer JS, Vinson C, Lumish RM. Infections caused by Pseudomonas maltophilia. Expanding Clinical Spectrum. Arch Intern Med 1987; 147:1672–1674
    [Google Scholar]
  42. Neu HC. Perspectives on antimicrobial therapy in the new century. 17th International Congress of Chemotherapy Berlin 1991: abstract no. 1352
    [Google Scholar]
  43. Bush K. Characterization of β-lactamases. Antimicrob Agents Chemother 1989; 33:259–263
    [Google Scholar]
  44. Livermore DM, Wood MJ. Mechanisms and clinical significance of resistance to new beta-lactam antibiotics. Br J Hosp Med 1990; 44:252–263
    [Google Scholar]
  45. Eley A, Greenwood D. Characterization of β-lactamases in clinical isolates of Bacteroides. J Antimicrob Chemother 1986; 18:325–333
    [Google Scholar]
  46. Martin C, Sedallian A, Portman V, Miscopein G. Detection de beta-lactamase chez les Bacteroides du group fragilis. Med Mai Infect 1990; 20:135–139
    [Google Scholar]
  47. Edwards R, Greenwood D. An investigation of β-lactamases from clinical isolates of Bacteroides species. J Med Microbiol 1992; 36:89–95
    [Google Scholar]
  48. Isaacs RD, Paviour SD, Bunker DE, Lang SDR. Wound infection with aerogenic Aeromonas strains: a review of twenty-seven cases. Eur J Clin Microbiol Infect Dis 1988; 7:355–360
    [Google Scholar]
  49. Diaz A, Velasco AC, Hawkins F, Cabanas F. Aeromonas hydrophila-associated diarrhea in a neonate. Pediatr Infect Dis 1986; 5:704
    [Google Scholar]
  50. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35:147–151
    [Google Scholar]
  51. Bandoh K, Watanabe K, Muto Y, Tanaka Y, Kato N, Ueno K. Conjugal transfer of imipenem resistance in Bacteroides fragilis. J Antibiot 1992; 45:542–547
    [Google Scholar]
  52. Sanders CC, Sanders WE. Clinical importance of inducible beta-lactamases in gram negative bacteria. Eur J Clin Microbiol 1987; 6:435–438
    [Google Scholar]
  53. Payne DJ, Amyes SGB. Transferable resistance to extended-spectrum β-lactams: a major threat or a minor inconvenience?. J Antimicrob Chemother 1991; 27:255–261
    [Google Scholar]
  54. Biischer K-H, Cullmann W, Dick W, Opferkuch W. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother 1987; 31:703–708
    [Google Scholar]
  55. Chow JW, Shlaes DM. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother 1991; 28:499–504
    [Google Scholar]
  56. Mehtar S, Tsakris A, Pitt TL. Imipenem resistance in Proteus mirabilis. J Antimicrob Chemother 1991; 28:612–615
    [Google Scholar]
  57. Lee EH, Nicolas MH, Kitzis MD, Pialoux G, Collatz E, Gutmann L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother 1991; 35:1093–1098
    [Google Scholar]
  58. Raimondi A, Traverso A, Nikaido H. Imipenem-and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother 1991; 35:1174–1180
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-39-2-93
Loading
/content/journal/jmm/10.1099/00222615-39-2-93
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error