1887

Abstract

SUMMARY

is a major causative agent of intramammary infections in dairy cows. In this report, the pathogenesis of these infections is described. The potential role in virulence of . surface components (adhesins, protein A and capsular poly-saccharides), toxins, extracellular enzymes and coagulase, and perspectives for the development of an efficient vaccine are discussed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-40-2-79
1994-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/40/2/medmicro-40-2-79.html?itemId=/content/journal/jmm/10.1099/00222615-40-2-79&mimeType=html&fmt=ahah

References

  1. Kloos WE, Schleifer KH. Staphylococcus. Sneath PHA, Mair NS, Sharpe ME, Holt JG. Bergey’s Manual of systematic bacteriology 2 Baltimore: Williams and Wilkins Co; 19861013–1035
    [Google Scholar]
  2. Sheagren JN. Staphylococcus aureusthe persistent pathogen. N Engl JMed 1984; 310:1368-13731437–1442
    [Google Scholar]
  3. Anderson JC. Veterinary aspects of staphylococci. Easmon CSF, Adlam C. Staphylococci and staphylococcal infections 1 Clinical and epidemiological aspects London: Academic Press; 1983193–241
    [Google Scholar]
  4. Poutrel B. Généralités sur les mammites de la vache laitiére. Processus infectieux, épidémiologie, diagnostics, méthodes de controle. Rec Med Vet 1985; 161:497–511
    [Google Scholar]
  5. Bramley AJ, Dodd FK. Reviews of the progress in dairy science: mastitis control—progress and prospects. J Dairy Res 1984; 51:481–512
    [Google Scholar]
  6. Le Louedec C. Efficacité des antibiotiques contre les mammites bovines staphylococciques et streptococciques. Ann Rech Vet 1978; 9:63–88
    [Google Scholar]
  7. Anderson JC. The problem of immunization against staphylococcal mastitis. Br Vet J 1978; 134:412–420
    [Google Scholar]
  8. Colditz IG, Watson DL. The immunophysiological basis for vaccinating ruminants against mastitis. Aust Vet J 1985; 62:145–153
    [Google Scholar]
  9. Rainard P, Poutrel B. Immunization against mastitis: a practical goal?. Flem Vet J 1991; 62: Suppl 1 141–149
    [Google Scholar]
  10. Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 1988; 10: Suppl 2 S274–S276
    [Google Scholar]
  11. Jain NC. Common mammary pathogens and factors in infection and mastitis. J Dairy Sci 1979; 62:128–134
    [Google Scholar]
  12. Neave FK. The control of mastitis by hygiene. Dodd FH, Jackson ER. Control of bovine mastitis British Cattle Veterinary Association; 197155
    [Google Scholar]
  13. Kingwill RG. The NIRD-CVL mastitis control method. Mastitis control and herd management. Reading, NIRD 198124
    [Google Scholar]
  14. Bramley AJ, King JS, Higgs TM, Neave FK. Colonization of the bovine teat duct following inoculation with Staphylococcus aureus and Escherichia coli . Br Vet J 1979; 135:149–162
    [Google Scholar]
  15. Forbes D. The pathogenesis of bovine mastitis. Vet Bull 1969; 39:529–541
    [Google Scholar]
  16. Du Preez JH. Teat canal infections. Kiel, Milchwirtsch Forschungsber 1985; 37:267–273
    [Google Scholar]
  17. Craven N. Do rising fat globules assist microbial invasion via the teat duct between milking?. Kiel Milchwirtsch Forschungsber 1985; 37:554–558
    [Google Scholar]
  18. Williams DM, Mein GA. The role of machine milking in the invasion of mastitis organisms and implications for maintaining low infection rates. Kiel Milchwirtsch Forschungsber 1985; 37:415–425
    [Google Scholar]
  19. Prasad LBM, Newbould FHS. Initial response of the bovine mammary gland to invasion by Staphylococcus aureus . Can Vet J 1968; 9:170–177
    [Google Scholar]
  20. Anderson JC. Progressive pathology of staphylococcal mastitis with a note on control, immunisation and therapy. Vet Rec 1982; 110:372–376
    [Google Scholar]
  21. Newbould FHS, Neave FK. The response of the bovine mammary gland to an infusion of staphylococci. J Dairy Res 1965; 32:163–170
    [Google Scholar]
  22. Postle DS, Roguinsky M, Poutrel B. Induced staphylococcal infections in the bovine mammary gland. Am J Vet Res 1978; 39:29–35
    [Google Scholar]
  23. Smith H. Microbial surfaces in relation to pathogenicity. Bacteriol Rev 1977; 41:475–500
    [Google Scholar]
  24. Frost AJ. Selective adhesion of microorganisms to the ductular epithelium of the bovine mammary gland. Infect Immun 1975; 12:1154–1156
    [Google Scholar]
  25. Opdebeeck JP, Frost AJ, O’Boyle D. Adhesion of Staphylococcus aureus and Escherichia coli to bovine udder epithelial cells. Vet Microbiol 1988; 16:77–86
    [Google Scholar]
  26. Frost AJ, Wanasinghe DD, Woolcock JB. Some factors affecting selective adherence of microorganisms in the bovine mammary gland. Infect Immun 1977; 15:245–253
    [Google Scholar]
  27. Wanasinghe DD. Adherence as a prerequisite for infection of the bovine mammary gland by bacteria. Acta Vet Scand 1981; 22:109–117
    [Google Scholar]
  28. Gudding R, McDonald JS, Cheville NF. Pathogenesis of Staphylococcus aureus mastitis: bacteriologic, histologic, and ultrastructural pathologic findings. Am J Vet Res 1984; 45:2525–2531
    [Google Scholar]
  29. Jonsson P, Wadström T. Cell surface hydrophobicity of Staphylococcus aureus measured by the salt agglutination test (SAT). Curr Microbiol 1984; 10:203–210
    [Google Scholar]
  30. Mamo W, Rozgonyi F, Brown A, Hjertén S, Wadström T. Cell surface hydrophobicity and charge of Staphylococcus aureus and coagulase-negative staphylococci from bovine mastitis. J Appl Bacteriol 1987; 62:241–249
    [Google Scholar]
  31. Holderbaum D, Hall GS, Ehrhart LA. Collagen binding to Staphylococcus aureus . Infect Immun 1986; 54:359–364
    [Google Scholar]
  32. Kuusela P. Fibronectin binds to Staphylococcus aureus . Nature 1978; 276:718–720
    [Google Scholar]
  33. Proctor RA. The staphylococcal fibronectin receptor: evidence for its importance in invasive infections. Rev Infect Dis 1987; 9: Suppl 4 S335–S340
    [Google Scholar]
  34. Fröman G, Switalski LM, Speziale P, Höök M. Isolation and characterization of a fibronectin receptor from Staphylococcus aureus . J Biol Chem 1987; 262:6564–6571
    [Google Scholar]
  35. Signas C, Raucci G, Jönsson K. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Nati Acad SciUSA 1989; 86:699–703
    [Google Scholar]
  36. Jönsson K, Signas C, Müller H-P, Lindberg M. Two different genes encode fibronectin binding proteins in Staphylo-coccus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem 1991; 202:1041–1048
    [Google Scholar]
  37. Mamo W, Fröman G, Wadström T. Interaction of subepithelial connective tissue components with Staphylococcus aureus and coagulase-negative staphylococci from bovine mastitis. Vet Microbiol 1988; 18:163–176
    [Google Scholar]
  38. Mamo W, Lindahl M, Jonsson P. Binding of fibronectin and type II collagen to Staphylococcus aureus from bovine mastitis: reduction of binding after growth in milk whey. Microb Pathog 1992; 12:443–449
    [Google Scholar]
  39. Wanasinghe DD. In vitro adherence of Staphylococcus aureus to bovine mammary gland epithelial cells. Acta Vet Scand 1981; 22:99–108
    [Google Scholar]
  40. Lindahl M, Holmberg O, Jonsson P. Adhesive proteins of haemagglutinating Staphylococcus aureus isolated from bovine mastitis. J Gen Microbiol 1990; 136:935–939
    [Google Scholar]
  41. Sandholm M, Kaartinen L, Hyvönen L, Veijalainen K, Kousa PL. Flotation of mastitis pathogens with cream from subclinically infected quarters. Prospects for developing a cream-rising test for detecting mastitis caused by major mastitis pathogens. Zentralbl Veterinarmed (B) 1989; 36:27–34
    [Google Scholar]
  42. Paape MJ, Wergin WP, Guidry AJ, Pearson RE. Leukocytes—second line of defense against invading mastitis pathogens. J Dairy Sei 1979; 62:135–153
    [Google Scholar]
  43. Schalm OW, Lasmanis J, Jain NC. Conversion of chronic staphylococcal mastitis to acute gangrenous mastitis after neutropenia in blood and bone marrow produced by an equine anti-bovine leukocyte serum. Am J Vet Res 1976; 37:885–890
    [Google Scholar]
  44. Schalm OW, Carroll EJ, Jain NC. Bovine mastitis. Philadelphia: Lea and Febiger; 1971
    [Google Scholar]
  45. Heald CW. Morphometric study of experimentally induced Staphylococcus bovis mastitis in the cow. Am J Vet Res 1979; 40:1294–1298
    [Google Scholar]
  46. Roitt I, Brostoff J, Male D. Immunologie fondamentale et appliquée (traduit d Tangíais). Paris: Médecine et Sciences Internationales; 1985
    [Google Scholar]
  47. Peterson PK, Wilkinson BJ, Kim Y. The key role of peptidoglycan in the opsonization of Staphylococcus aureus . J Clin Invest 1978; 61:597–609
    [Google Scholar]
  48. Wilkinson BJ, Kim Y, Peterson PK, Quie PG, Michael AF. Activation of complement by cell surface components of Staphylococcus aureus . Infect Immun 1978; 20:388–392
    [Google Scholar]
  49. McGuire TC, Musoke AJ, Kurtti T. Functional properties of bovine IgGl and IgG2: interaction with complement, macrophages, neutrophils and skin. Immunology 1979; 38:249–256
    [Google Scholar]
  50. Watson DL. The effect of cytophilic IgG2 on phagocytosis by ovine polymorphonuclear leucocytes. Immunology 1976; 31:159–165
    [Google Scholar]
  51. Poutrel B, Caffin JP. A sensitive microassay for the determination of hemolytic complement activity in bovine milk. Vet Immunol Immunopathol 1983; 5:177–184
    [Google Scholar]
  52. Butler JE. Bovine immunoglobulins: an augmented review. Vet Immunol Immunopathol 1983; 4:43–152
    [Google Scholar]
  53. Caffin JP, Poutrel B, Rainard P. Physiological and pathological factors influencing bovine immunoglobulin Gl concentration in milk. J Dairy Sci 1983; 66:2161–2166
    [Google Scholar]
  54. Caffin JP, Poutrel B. Physiological and pathological factors influencing bovine immunoglobulin G2 concentration in milk. J Dairy Sci 1988; 71:2035–2043
    [Google Scholar]
  55. Rainard P, Poutrel B, Caffin JP. Assessment of hemolytic and bactericidal complement activities in normal and mastitic bovine milk. J Dairy Sci 1984; 67:614–619
    [Google Scholar]
  56. Paape MJ, Wergin WP. The leukocyte as a defense mechanism. J Am Vet MedAssoc 1977; 170:1214–1223
    [Google Scholar]
  57. Russell MW, Reiter B. Phagocytic deficiency of bovine milk leucocytes: an effect of casein. J Reticuloendothel Soc 1975; 18:1–13
    [Google Scholar]
  58. Forsgren A, Ghetie V, Lindmark R, Sjöquist J. Protein A and its exploitation. Easmon CSF, Adlam C. Staphylococci and staphylococcal infections 2 The organism in vivo and in vitro. London, Academic Press; 1983429–480
    [Google Scholar]
  59. Lindmark R, Thoren-Tolling K, Sjöquist J. Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J Immunol Methods 1983; 62:1–13
    [Google Scholar]
  60. Dossett JH, Kronvall G, Williams RC, Quie PG. Antiphagocytic effects of staphylococcal protein A. J Immunol 1969; 103:1405–1410
    [Google Scholar]
  61. Peterson PK, Verhoef J, Sabath LD, Quie PG. The effect of protein A on staphylococcal opsonization. Infect Immun 1977; 15:760–764
    [Google Scholar]
  62. Kronvall G, Holmberg O, Ripa T. Protein A in Staphylococcus aureus strains of human and bovine origin. Acta Pathol Microbiol Scand (B) 1972; 80:735–742
    [Google Scholar]
  63. Poutrel B, Ducelliez M. Evaluation of three rapid tests for identification of Staphylococcus aureus isolated in bovine milk. Ann Rech Vet 1979; 10:125–129
    [Google Scholar]
  64. Goudswaard J, Van der Donk JA, Noordzij A, van Dam RH, Vaerman JP. Protein A reactivity of various mammalian immunoglobulins. Scand J Immunol 1978; 8:21–28
    [Google Scholar]
  65. Jonsson P, Lindberg M, Haraldsson I, Wadström T. Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha hemolysin, coagulase and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect Immun 1985; 49:765–769
    [Google Scholar]
  66. Foster TJ, O’Reilly M, Phonimdaeng P, Cooney J, Patel AH, Bramley AJ. Genetic studies of virulence factors of Staphylococcus aureus. Properties of coagulase and y-toxin and the role of a toxin, ß toxin, and protein A in the pathogenesis of S. aureus infections. Novick RP. (ed) Molecular biology of the staphylococci; New York, VCH: 1990403–417
    [Google Scholar]
  67. Wilkinson BJ. Staphylococcal capsules and slime. Easmon CSF, Adlam C. Staphylococci and staphylococcal infections 2 The organism in vivo and in vitro London: Academic Press; 1983481–523
    [Google Scholar]
  68. Melly MA, McGee ZA, Horn RG, Morris F, Glick AD. An electron microscopic india ink technique for demonstrating capsules on microorganisms: studies with Streptococcus pneumoniae,Staphylococcus aureus,and Neisseria gonorrhoeae. J Infect Dis 1979; 140:605–609
    [Google Scholar]
  69. Yoshida K, Ekstedt RD. Relation of mucoid growth of Staphylococcus aureus to clumping factor reaction, morphology in serum-soft agar, and virulence. J Bacteriol 1968; 96:902–908
    [Google Scholar]
  70. Yoshida K, Smith MR, Naito Y. Biological and immunological properties of encapsulated strains of Staphylococcus aureus from human sources. Infect Immun 1970; 2:528–532
    [Google Scholar]
  71. Smith MR, Yoshida K, Naito Y. Use of the clumping factor reaction for the identification of encapsulated strains of Staphylococcus aureus from human sources. Infect Immun 1971; 3:707–708
    [Google Scholar]
  72. Norcross NL, Opdebeeck JP. Encapsulation of Staphylococcus aureus isolated from bovine milk. Vet Microbiol 1983; 8:397–404
    [Google Scholar]
  73. Opdebeeck JP, Norcross NL. Frequency and immunologic cross-reactivity of encapsulated Staphylococcus aureus in bovine milk in New York. Am J Vet Res 1983; 44:936–988
    [Google Scholar]
  74. Opdebeeck JP, Frost AJ, O’Boyle D. Adhesion of Staphylococcus aureus and Escherichia coli to bovine udder epithelial cells. Vet Microbiol 1988; 16:77–86
    [Google Scholar]
  75. Anderson JC. Absence of encapsulation in strains of Staphy lococcus aureus isolated from bovine mastitis. Res Vet Sei 1984; 37:359–361
    [Google Scholar]
  76. Rather PN, Davis AP, Wilkinson BJ. Slime production by bovine milk Staphylococcus aureus and identification of coagulase-negative staphylococcal isolates. J Clin Microbiol 1986; 23:858–862
    [Google Scholar]
  77. Watson DL, Prideaux JA. Comparisons of Staphylococcus aureus grown in vitro or in vivo. Microbiol Immunol 1979; 23:543–547
    [Google Scholar]
  78. Watson DL. Virulence of Staphylococcus aureus grown in vitro or in vivo. Res Vet Sei 1982; 32:311–315
    [Google Scholar]
  79. Watson DL, Watson NA. Expression of pseudocapsule by Staphylococcus aureus: influence of culture medium and relevance to mastitis. Res Vet Sci 1989; 47:152–157
    [Google Scholar]
  80. Karakawa WW, Vann WF. Capsular polysaccharides of Staphylococcus aureus . Semin Infect Dis 1982; 4:285–293
    [Google Scholar]
  81. Watson DL. Evaluation of attenuated, live staphylococcal mastitis vaccine in lactating heifers. J Dairy Sci 1984; 67:2608–2613
    [Google Scholar]
  82. Watson DL. Vaccination against experimental staphylococcal mastitis in ewes. Res Vet Sci 1988; 45:16–21
    [Google Scholar]
  83. Sompolinsky D, Samra Z, Karakawa WW, Vann WF, Schneerson R, Malik Z. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol 1985; 22:828–834
    [Google Scholar]
  84. Arbeit RD, Karakawa WW, Vann WF, Robbins JB. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus . Diagn Microbiol Infect Dis 1984; 2:85–91
    [Google Scholar]
  85. Hochkeppel HK, Braun DG, Vischer W. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol 1987; 25:526–530
    [Google Scholar]
  86. Fournier JM, Bouvet A, Boutonnier A. Predominance of capsular polysaccharide type 5 among oxacillin-resistant Staphylococcus aureus . J Clin Microbiol 1987; 25:1932–1933
    [Google Scholar]
  87. Fournier J-M, Vann WF, Karakawa WW. Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide. Infect Immun 1984; 45:87–93
    [Google Scholar]
  88. Fournier JM, Hannon K, Moreau M, Karakawa WW, Van WF. Isolation of type 5 capsular polysaccharide from Staphylococcus aureus . Ann Inst Pasteur Microbiol 1987; 138:561–567
    [Google Scholar]
  89. Vann WF, Moreau M, Sutton R, Byrd RA, Karakawa WW. Structure and immunochemistry of Staphylococcus aureus capsular polysaccharide. UCLA Symp Mol Cell Biol New Ser 1988; 64:187–198
    [Google Scholar]
  90. Karakawa WW, Sutton A, Schneerson R, Karpas A, Vann WF. Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 1988; 56:1090–1095
    [Google Scholar]
  91. Poutrel B, Boutonnier A, Sutra L, Fournier JM. Prevalence of capsular polysaccharide types 5 and 8 among Staphylococcus aureus isolates from cow, goat and ewe milk. J Clin Microbiol 1988; 26:38–40
    [Google Scholar]
  92. Sutra L, Mendolia C, Rainard P, Poutrel B. Encapsulation of Staphylococcus aureus isolates from mastitic milk: re-lationship between capsular polysaccharide types 5 and 8 and colony morphology in serum-soft agar, clumping factor, teichoic acid and protein A. J Clin Microbiol 1990; 28:447–451
    [Google Scholar]
  93. Sutra L, Poutrel B. Capsular polysaccharides of Staphylococcus aureus isolates from mastitic milk. Jeljaszewicz J, Ciborowski P. The staphylococci. Zentralbl Bakteriol 1991; Suppl 21:161
    [Google Scholar]
  94. Sutra L, Rainard P, Poutrel B. Phagocytosis of mastitis isolates of Staphylococcus aureus and expression of type 5 capsular polysaccharide are influenced by growth in the presence of milk. J Clin Microbiol 1990; 28:2253–2258
    [Google Scholar]
  95. Peterson PK, Wilkinson BJ, Kim Y, Schmeling D, Quie PG. Influence of encapsulation on staphylococcal opsonization and phagocytosis by human polymorphonuclear leukocytes. Infect Immun 1978; 9:943–949
    [Google Scholar]
  96. King BF, Wilkinson BJ. Binding of human immunoglobulin G to protein A in encapsulated Staphylococcus aureus . Infect Immun 1981; 33:666–672
    [Google Scholar]
  97. Xu S, Arbeit RD, Lee JC. Phagocytic killing of encapsulated and microencapsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 1992; 60:1358–1362
    [Google Scholar]
  98. Van Oss CJ. Phagocytosis as a surface phenomenon. Ann Rev Microbiol 1978; 32:19–39
    [Google Scholar]
  99. Sutra L, Poutrel B. Detection of capsular polysaccharide in milk of cows with natural intramammary infection caused by Staphylococcus aureus . Am J Vet Res 1990; 51:1857–1859
    [Google Scholar]
  100. Johne B, Jarp J, Haaheim LR. Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy. J Clin Microbiol 1989; 27:1631–1635
    [Google Scholar]
  101. Recsei P, Kreiswirth B, O’Reilly M, Schlievert P, Gruss A, Novick RP. Regulation of exoprotein gene expression in Staphylococcus aureus by agr . Mol Gen Genet 1986; 202:58–61
    [Google Scholar]
  102. Chandler RL, Reid IM. Ultrastructural and associated observations on clinical cases of mastitis in cattle. J Comp Pathol 1973; 83:233–241
    [Google Scholar]
  103. Sordillo LM, Doymaz MZ, Oliver SP. Morphological study of chronic Staphylococcus aureus mastitis in the lactating bovine mammary gland. Res Vet Sci 1989; 47:247–252
    [Google Scholar]
  104. Nickerson SC, Heald CW. Histopathologic response of the bovine mammary gland to experimentally induced. Staphylococcus aureus infection. Am J Vet Res 1981; 42:1351–1355
    [Google Scholar]
  105. Chandler RL, Smith K, Turfrey BA. Studies on the phagocytic potential of secretory epithelial cells in experimental mastitis. J Comp Pathol 1980; 90:385–394
    [Google Scholar]
  106. Vann JM, Proctor RA. Ingestion of Staphylococcus aureus by bovine endothelial cells results in time- and inoculum-dependent damage to endothelial cell monolayers. Infect Immun 1987; 55:2155–2163
    [Google Scholar]
  107. Elek SD, Levy E. Distribution of haemolysis in pathogenic and non-pathogenic staphylococci. J Pathol Bacteriol 1950; 62:541–554
    [Google Scholar]
  108. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus . Microbiol Rev 1991; 55:733–751
    [Google Scholar]
  109. Hajek V, Marsalek E. A study of staphylococci of bovine origin Staphylococcus aureus var. bovis. Zentralbl Bakteriol [Orig] A 1969; 209:154–160
    [Google Scholar]
  110. Derbyshire JB. Studies in immunity to experimental staphylococcal mastitis in the goat and the cow. J Comp Pathol Ther 1960; 70:222–231
    [Google Scholar]
  111. Plommet M, Le Gall A. Mammite staphylococcique de la brebis. III. Recherches sur Pimmunité antitoxique et antimicrobienne. Ann Inst Pasteur 1963; 104:779–796
    [Google Scholar]
  112. Adlam C, Ward PD, Turner WH, Craig GR, Edkins S, Knights JM. The role of toxins and antitoxins in staphylococcal mastitis. Zentralbl Bakteriol Mikrobiol Hyg 1981; 10:647–650
    [Google Scholar]
  113. Le Gall A, Plommet M. Observations sur la croissance des staphylocoques et al reaction leucocytaire au cours des premieres heures de al mammite experiméntale de la brebis. Ann Biol Anim Bioch Biophys 1965; 5:113–130
    [Google Scholar]
  114. Ward PD, Adlam C, McCartney AC, Arbuthnott JP, Thorley CM. A histopathological study of the effects of highly purified staphylococcal alpha and beta toxins on the lactating mammary gland and skin of the rabbit. J Comp Pathol 1919; 89:169–177
    [Google Scholar]
  115. Adlam C, Thorley CM, Ward PD, Collins M, Lucken RN, Knight PA. Natural and experimental staphylococcal mastitis in rabbits. J Comp Pathol 1976; 86:581–593
    [Google Scholar]
  116. Adlam C, Ward PD, McCartney AC, Arbuthnott JP, Thorley CM. Effect of immunization with highly purified alpha-and beta-toxins on staphylococcal mastitis in rabbits. Infect Immun 1977; 17:250–256
    [Google Scholar]
  117. Anderson JC, Adlam C, Knights JM. The effect of staphylocoagulase in the mammary gland of the mouse. Br J Exp Pathol 1982; 63:336–340
    [Google Scholar]
  118. Kinsman O, Jonsson P, Haraldsson I, Lindberg M, Arbuthnott JP, Wadström T. Decreased virulence of alpha haemolysin negative and coagulase negative mutants of Staphylococcus aureus in experimental mastitis in mice. Zentralbl Bakteriol Mikrobiol Hyg 1981; 10:651–659
    [Google Scholar]
  119. Bramley AJ, Patel AH, O’Reilly M, Foster R, Foster TJ. Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 1989; 57:2489–2494
    [Google Scholar]
  120. Anderson JC. Experimental staphylococcal mastitis in the mouse: the induction of chronic mastitis and its response to antibiotic therapy. J Comp Pathol 1977; 87:611–621
    [Google Scholar]
  121. Loeffler DA, Norcross NL, Opdebeeck JP. Determination by enzyme-linked immunosorbent assay of the optimal dose of staphylococcal leukocidin for systemic immunization of dairy cows. Am J Vet Res 1988; 49:1452–1455
    [Google Scholar]
  122. Woodin AM. Staphylococcal leucocidin. Cohen JO. (ed) The staphylococci New York: Wiley Intersciences; 1972281–299
    [Google Scholar]
  123. Loeffler DA, Schat KA, Norcross NL. Use of 51Cr release to measure the cy totoxic effects of staphylococcal leukocidin and toxin neutralization on bovine leukocytes. J Clin Microbiol 1986; 23:416–420
    [Google Scholar]
  124. Loeffler DA, Norcross NL. Enzyme-linked immunosorbent assay for detection of milk immunoglobulins to leukocidin toxin of Staphylococcus aureus . Am J Vet Res 1985; 46:1728–1732
    [Google Scholar]
  125. Supersac G, Prevost G, Piemont Y. Sequencing of leucocidin R from Staphylococcus aureus P83 suggests that staphylococcal leucocidins and gamma-hemolysin are members of a single, two-component family of toxins. Infect Immun 1993; 61:580–587
    [Google Scholar]
  126. Kenny K, Reiser RF, Bastida-Corcuera FD, Norcross NL. Production of enterotoxins and toxic shock syndrome toxin by bovine mammary isolates of Staphylococcus aureus . J Clin Microbiol 1993; 31:706–707
    [Google Scholar]
  127. Ikejima T, Okusawa JW, van der Meer JWM, Dinarello CA. Induction by toxic-shock-syndrome toxin-1 of a circulating tumor necrosis factor-like substance in rabbits and of immunoreactive tumor necrosis factor and interleukin-1 from human mononuclear cells. J Infect Dis 1988; 158:1017–1025
    [Google Scholar]
  128. Micusan W, Desrosiers M, Gosselin J. Stimulation of T cells and induction of interferon by toxic shock syndrome toxin 1. Rev Infect Dis 1989; 11: Suppl 1 S305–S312
    [Google Scholar]
  129. Arvidson SO. Extracellular enzymes of Staphylococcus aureus . Easmon CSF, Adlam C. Staphylococci and staphylococcal infections 2 The organism in vivo and in vitro London: Academic Press; 1983745–808
    [Google Scholar]
  130. Anderson JC. Mechanisms of staphylococcal virulence in relation to bovine mastitis. Br Vet J 1976; 132:229–245
    [Google Scholar]
  131. Phonimdaeng P, O’Reilly M, Nowlan P, Bramley AJ, Foster TJ. The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. Mol Microbiol 1990; 4:393–404
    [Google Scholar]
  132. Hajek V, Marsalek E. Evaluation of classifactory criteria for staphylococci. Zentralbl Bakteriol Hyg 1976; 5:11–21
    [Google Scholar]
  133. Watson DL. Vaccination against experimental staphylococcal mastitis in dairy heifers. Res Vet Sei 1992; 53:346–353
    [Google Scholar]
  134. De Cueninck BJ. Immune-mediated inflammation in the lumen of the bovine mammary gland. Int Arch Allergy Appl Immunol 1979; 59:394–402
    [Google Scholar]
  135. De Cueninck B. Expression of cell-mediated hypersensitivity in the lumen of the mammary gland in guinea pigs. Am J Vet Res 1982; 43:1696–1700
    [Google Scholar]
  136. Rainard P, Lautrou Y, Sarradin P, Coulibaly A, Poutrel B. The kinetics of inflammation and phagocytosis during bovine mastitis induced by Streptococcus agalactiae bearing the protein X. Vet Res Commun 1991; 15:163–176
    [Google Scholar]
  137. Campbell PA. The neutrophil, a professional killer of bacteria, may be controlled by T cells. Clin Exp Immunol 1990; 79:141–143
    [Google Scholar]
  138. Gilbert FB, Poutrel B, Sutra L. Immunogenicity in cows of Staphlococcus aureus type 5 capsular polysaccharide-ovalbumin conjugate. Vaccine
    [Google Scholar]
  139. Fattom A, Schneerson R, Szu SC. Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A. Infect Immun 1990; 58:2367–2374
    [Google Scholar]
  140. Fattom A, Shiloach J, Bryla D. Comparative immunogenicity of conjugates composed of the Staphylococcus aureus type 8 capsular polysaccharide bound to carrier proteins by adipic acid dihydrazide or N-succinimidyl-3-(2-pyridyldithio)propionate. Infect Immun 1992; 60:584–589
    [Google Scholar]
  141. Foster TJ. Potential for vaccination against infections caused by Staphylococcus aureus . Vaccine 1991; 9:221–227
    [Google Scholar]
  142. Nelson LF, Flock JL, Höök M, Lindberg M, Müller HP, Wadström T. Adhesins in staphylococcal mastitis as vaccine components. Flem Vet J 1991; 62: Suppl 1 111–125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-40-2-79
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error