1887

Abstract

Surmmary

Th1-and Th2-derived cytokine production in response to synthetic peptides of the fimbrial subunit protein (fimbrilin) from strain 381 was assessed in spleen mononuclear cells (MNC) of BALB/c mice (H-2 haplotype) immunised with the fimbrial protein antigen and adjuvant GM-53 in Freund’s incomplete adjuvant (FIA). Sixty-seven sequential overlapping 10-mer peptides covering the complete 337 amino-acids (AA) protein of fimbrilin were synthesised. Stimulation of spleen MNC with these 10-mer peptides resulted in the production of murine interleukin-2 (IL-2), γ-interferon (IFN-γ), IL-4, IL-5 and IL-6. Peptides 13 (AA 61-70), 24 (AA 116-125), 31 (AA 151-160) and 64 (AA 316-325) markedly induced IL-2 production. In particular, peptide 24 (DPLKIKRVHA), which contained I-A, I-E and I-A binding motifs, was the most potent stimulator of IL-2, IFN-γ, IL-4, IL-5 and IL-6 production. Spleen MNC from C3H/HeN mice (H-2) followed by BALB/c mice (H-2) immunised with peptide 24 were high responders to peptide 24 in terms of both IFN-γ and IL-4 production, whereas A/J mice (H-2) and C57BL/6 mice (H-2) were very low responders, fimbriae evoked higher delayed-type hypersensitivity (DTH) reactions in B10. D2 (H-2) and B10. BR (H-2) mice followed by C57BL/10 (B10, H-2) and B10. A (H-2) and in guinea-pigs immunised with the fimbriae and GM-53 in FIA. Thus, the Th1 and Th2 helper T cell cytokine-producing responses and the DTH reactions to fimbriae in mice are restricted by H-2 haplotype and the amino-acid sequence (AA 116-125) within the fimbrial protein molecule acts as a common stimulator of cytokine production in both Th1 and Th2 cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-3-165
1995-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/3/medmicro-42-3-165.html?itemId=/content/journal/jmm/10.1099/00222615-42-3-165&mimeType=html&fmt=ahah

References

  1. Watts T. H., Gaub H. E., McConnell H. M. T-cell-mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. Nature 1986; 320:179–181
    [Google Scholar]
  2. Schwartz R. H. Immune response (Ir) genes of the murine major histocompatibility complex. Adv Immunol 1986; 38:31–201
    [Google Scholar]
  3. Allen P. M., Matsueda G. R., Evans R. J., Dunbar J. B., Marshall G. R., Unanue E. R. Identification of the T-cell and la contact residues of a T-cell antigenic epitope. Nature 1987; 327:713–715
    [Google Scholar]
  4. Sette A., Buus S., Colon S., Smith J. A., Miles C., Grey H. M. Structure characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature 1987; 328:395–399
    [Google Scholar]
  5. Babbitt D. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985; 317:359–361
    [Google Scholar]
  6. Buus S., Sette A., Colon S. M., Miles C., Grey H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 1987; 235:1353–1358
    [Google Scholar]
  7. Yamamura M., Uyemura K., Deans R. J. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254:277–279
    [Google Scholar]
  8. Haanen J. B. A. G., de Waal Malefijt R., Res P. C. M. Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med 1991; 174:583–592
    [Google Scholar]
  9. Cher D. J., Mosmann T. R. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by Th 1 clones. J Immunol 1987; 138:3688–3694
    [Google Scholar]
  10. Stout R. D., Bottomly K. Antigen-specific activation of effector macrophages by IFN-γ-producing (Th1) T cell clones. Failure of IL-4 producing (Th2) T cell clones to activate effector function in macrophages. J Immunol 1989; 142:760–765
    [Google Scholar]
  11. Killar L., MacDonald G., West J., Woods A., Bottomly K. Cloned, la-restricted T cells that do not produce interleukin 4 (IL4)/B cell stimulator factor 1 (BSF-1) fail to help antigen-specific B cells. J Immunol 1987; 138:1674–1679
    [Google Scholar]
  12. Coffman R. L., Seymour B. W., Lebman D. A. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev 1988; 102:5–28
    [Google Scholar]
  13. Boom W. H., Liano D., Abbas A. K. Heterogeneity of helper/inducer T lymphocytes. II Effects of interleukin 4-and interleukin 2-producing T cell clones on resting B lymphocytes. J Exp Med 1988; 167:1350–1363
    [Google Scholar]
  14. Slots J., Genco R. J. Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetem-comitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J Dent Res 1984; 63:412–421
    [Google Scholar]
  15. Slots J., Gibbons R. J. Attachment of Bacteroides melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infect Immun 1978; 19:254–264
    [Google Scholar]
  16. Okuda K., Slots J., Genco R. J. Bacteroides gingivalis, Bacteroides asaccharolyticus and Bacteroides melaninogenicus subspecies: cell surface morphology and adherence to erythrocytes and human buccal epithelial cells. Curr Microbiol 1981; 6:7–12
    [Google Scholar]
  17. Ogawa T., Kusumoto Y., Uchida H., Nagashima S., Ogo H., Hamada S. Immunobiological activities of synthetic peptide segments of fimbrial protein from Porphyromonas gingivalis. Biochem Biophys Res Commun 1991; 180:1335–1341
    [Google Scholar]
  18. Ogawa T., Ogo H., Hamada S. Chemotaxis of human monocytes by synthetic peptides that mimic segments of Porphyromonas gingivalis fimbrial protein. Oral Microbiol Immun 1994; 9:257–261
    [Google Scholar]
  19. Ogawa T., Uchida H., Hamada S. Porphyromonas gingivalis fimbriae and their synthetic peptides induce proinflammatory cytokines in human peripheral blood monocyte cultures. FEMS Microbiol Lett 1994; 116:237–242
    [Google Scholar]
  20. Ogawa T., Kusumoto Y., Hamada S., McGhee J. R., Kiyono H. Bacteroides gingivalis-specific serum IgG and IgA subclass antibodies in periodontal diseases. Clin Exp Immunol 1990; 82:318–325
    [Google Scholar]
  21. Ogawa T., Kono Y., McGhee M. L. Porphyromonas gingivalis-specific serum IgG and IgA antibodies originate from immunoglobulin-secreting cells in inflamed gingiva. Clin Exp Immunol 1991; 83:237–244
    [Google Scholar]
  22. Ogawa T., Shimauchi H., Hamada S. Mucosal and systemic immune responses in BALB/c mice to Bacteroides gingivalis fimbriae administered orally. Infect Immun 1989; 57:3466–3471
    [Google Scholar]
  23. Ogawa T., Kusumoto Y., Kiyono H., McGhee J. R., Hamada S. Occurrence of antigen-specific B cells following oral or parenteral immunization with Porphyromonas gingivalis fimbriae. Int Immunol 1992; 4:1003–1010
    [Google Scholar]
  24. Ogawa T., Ogo H., Uchida H., Hamada S. Humoral and cellular immune responses to the fimbriae of Porphyromonas gingivalis and their synthetic peptides. J Med Microbiol 1994; 40:397–402
    [Google Scholar]
  25. Shimauchi H., Ogawa T., Hamada S. Immune response gene regulation of the humoral immune response to Porphyromonas gingivalis fimbriae in mice. Immunology 1991; 74:362–364
    [Google Scholar]
  26. Ogawa T. The potential protective immune responses to synthetic peptides containing conserved epitopes of Porphyromonas gingivalis fimbrial protein. J Med Microbiol 1994; 41:349–358
    [Google Scholar]
  27. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a single amino acid. Proc Natl Acad Sci USA 1984; 81:3998–1002
    [Google Scholar]
  28. Dickinson D. P., Kubiniec M. A., Yoshimura F., Genco R. J. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis. J Bacteriol 1988; 170:1658–1665
    [Google Scholar]
  29. Maeji N. J., Bray A. M., Geysen H. M. Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods 1990; 134:23–33
    [Google Scholar]
  30. Merrifield R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85:2149–2154
    [Google Scholar]
  31. Furuta R., Kawata S., Naruto S., Minami A., Kotani S. Synthesis and biological activities of A-acetylglucosaminyl-β-(1 → 4)-N-acetylmuramyl tri-and tetra-peptide derivatives. Agric Biol Chem 1986; 50:2561–2572
    [Google Scholar]
  32. Bӧyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 ɡ. Scand J Clin Lab Invest 1968; 21: Suppl 9777–89
    [Google Scholar]
  33. Huygen K., Lozes E., Gilles B. Mapping of TH1 helper T-cell epitopes on major secreted Mycobacterial antigen 85A in mice infected with live Mycobacterium bovis BCG. Infect Immun 1994; 62:363–370
    [Google Scholar]
  34. Feller D. C., de La Cruz V. F. Identifying antigenic T-cell sites. Nature 1991; 349:720–721
    [Google Scholar]
  35. Fujiwara T., Morishima S., Takahashi I., Hamada S. Molecular cloning and sequencing of the fimbrilin gene of Porphyromonas gingivalis strains and characterization of recombinant proteins. Biochem Biophys Res Commun 1993; 197:241–247
    [Google Scholar]
  36. Sette A., Buus S., Appella E. Predication of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 1989; 86:3296–3300
    [Google Scholar]
  37. Itoh Y., Ogasawara K., Takami K. Determination of amino acids on agretopes of pigeon cytochrome c-related peptides specifically bound to I-A allelic products. Eur J Immunol 1994; 24:76–83
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-3-165
Loading
/content/journal/jmm/10.1099/00222615-42-3-165
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error