1887

Abstract

Surmmary

A non-opsonic mechanism of binding and phagocytosis by human neutrophils of arthroconidia is described. This was in direct contrast to the complement dependency of phagocytosis. Both serum complement and specific antibody to promoted maximal phagocytosis (61% and 40% of neutrophils, respectively, contained arthroconidia). Increasing the ratio of arthroconidia to neutrophils did not increase non-opsonic phagocytosis (18-26%). Phagocytosis of arthroconidia exposed to trypsin in the absence of opsonin was not affected (18%). However, proteinase and chitinase reduced the level of non-opsonic and opsonic phagocytosis to negligible levels (6.3% and 4.5%, respectively). When mannose was added to neutrophils, mannose receptors on the phagocyte membrane were partially blocked when arthroconidia were opsonised, but this did not reduce the level of non-opsonic phagocytosis. The non-opsonic mechanism proposed here may have direct relevance in skin sites poor in opsonins.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-3-225
1995-03-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/3/medmicro-42-3-225.html?itemId=/content/journal/jmm/10.1099/00222615-42-3-225&mimeType=html&fmt=ahah

References

  1. Ahmed A. R. Immunology of human dermatophyte infections. Arch Dermatol 1982; 118:521–525
    [Google Scholar]
  2. Aljabre S. H. M., Richardson M. D., Scott E. M., Shankland G. S. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet My col 1992; 30:145–152
    [Google Scholar]
  3. Aljabre S. H. M., Richardson M. D., Scott E. M., Rashid A., Shankland G. S. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol 1993; 18:231–235
    [Google Scholar]
  4. Ackerman A. B. Subtle clues to diagnosis by conventional microscopy. Neutrophils within the cornified layer as clues to infection by superficial fungi. Am J Dermatopathol 1979; 1:69–75
    [Google Scholar]
  5. Jones H. E., Reinhardt J. H., Rinaldi M. G. Acquired immunity to dermatophytes. Arch Dermatol 1974; 109:840–848
    [Google Scholar]
  6. Dahl M. V., Carpenter R. Polymorphonuclear leukocytes, complement, and Trichophyton rubrum. J Invest Dermatol 1986; 86:138–141
    [Google Scholar]
  7. Schroder J. M. Chemotactic cytokines in the epidermis. Exp Dermatol 1992; 1:12–19
    [Google Scholar]
  8. Hay R. J., Calderon R. A., Mackenzie C. D. Experimental dermato phytosis in mice: correlation between light and electron microscopic changes in primary, secondary and chronic infections. Br J Exp Pathol 1988; 69:703–715
    [Google Scholar]
  9. Calderon R. A., Shennan G. I. Susceptibility of Trichophyton quinckeanum and Trichophyton rubrum to products of oxidative metabolism. Immunology 1987; 61:283–288
    [Google Scholar]
  10. Calderon R. A., Hay R. J. Fungicidal activity of human neutron phils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology 1987; 61:289–295
    [Google Scholar]
  11. Hashimoto T. Infectious propagules of dermatophytes. In Cole G. T., Hoch H. C. (eds) The fungal spore and disease initiation in plants and animals New York: Plenum Press; 1991181–202
    [Google Scholar]
  12. Richardson M. D., Smith H. Resistance of virulent and attenuated strains of Candida albicans to intracellular killing by human and mouse phagocytes. J Infect Dis 1981; 144:557–564
    [Google Scholar]
  13. Hay R. J., Calderon R. A., Collins M. J. Experimental dermato phytosis: the clinical and histopathological features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol 1983; 81:270–274
    [Google Scholar]
  14. Davies R. R., Zaini F. Trichophyton rubrum and the chemotaxis of polymorphonuclear leukocytes Sabouraudia. J Med Vet My col 1984; 22:65–71
    [Google Scholar]
  15. Davies R. R., Zaini F. Enzymic activities of Trichophyton rubrum and the chemotaxis of polymorphonuclear leucocytes Sabouraudia. J Med Vet My col 1984; 22:235–241
    [Google Scholar]
  16. Hashimoto T., Wu-Yuan C. D., Blumenthal H. J. Isolation and characterization of the rodlet layer of Trichophyton menta-grophytes microconidial wall. J Bacteriol 1976; 127:1543–1549
    [Google Scholar]
  17. Pollack J. H., Lange C. F., Hashimoto T. “Nonfibrillar” chitin associated with walls and septa of Trichophyton menta-grophytes arthrospores. J Bacteriol 1983; 154:965–975
    [Google Scholar]
  18. Hashimoto T., Emyanitoff R. G., Mock R. C., Pollack J. H. Mor phogenesis of arthroconidiation in the dermatophyte Trichophyton mentagrophytes with special reference to wall ontogeny. Can J Microbiol 1984; 30:1415–1421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-3-225
Loading
/content/journal/jmm/10.1099/00222615-42-3-225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error