1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-5-312
1995-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/5/medmicro-42-5-312.html?itemId=/content/journal/jmm/10.1099/00222615-42-5-312&mimeType=html&fmt=ahah

References

  1. Skirrow m. b. campylobacter enteritis: a “new” disease. bmj 1977; 2:9–11
    [Google Scholar]
  2. Butzler j. p., de keyser p., detrain m., dehaen F. related vibrio in stools. j pediatr 1973; 82:493–495
    [Google Scholar]
  3. dekeyser P., Gossuin-Detrain M., Butzler J. P., Sternon J. Acuteenteritis due to related vibrio: first positive stool cultures. J Infect Dis 1972; 125:390–392
    [Google Scholar]
  4. Advisory Committee on the Microbiological Safety of Food Interim Report on Campylobacter. London: HMSO; 1993
    [Google Scholar]
  5. Tauxe R. V. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 19929–19
    [Google Scholar]
  6. Marshall B. J. Unidentified curved bacilli on gastric epithelium in chronic active gastritis. Lancet 1983; 1:1273–1275
    [Google Scholar]
  7. Marshall B. History of the discovery of C. pylori . In Blaser M. J. (ed) Campylobacter pylori in gastritis and peptic ulcer disease New York: Igaku-Shoin; 19897–23
    [Google Scholar]
  8. McFadyean F., Stockman S. Report of the departmental committee appointed by the board of agriculture and fisheries to enquire into epizootic abortion. vol 3 London: His Majesties Stationary Office; 1913
    [Google Scholar]
  9. Mishu B., Patton C. M., Tauxe R. V. Clinical and epidemiologic features of non-jejuni, non-coli Campylobacter species. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 199231–41
    [Google Scholar]
  10. Cover T. L., Blaser M. J. The pathobiology of Campylobacter infections in humans. Anna Rev Med 1989; 40:269–285
    [Google Scholar]
  11. Guerrant R. L., Lahita R. G., Winn W. C., Roberts R. B. Campylobacteriosis in man: pathogenic mechanisms and review of 91 blood stream infections. Am J Med 1978; 65:584–592
    [Google Scholar]
  12. Mandal B. K., De Mol P., Butzler J. P. Clinical aspects of Campylobacter infections in humans. In Butzler J.-P. (ed) Campylobacter infection in man and animals Boca Raton: Fla, CRC Press Inc; 198421–31
    [Google Scholar]
  13. Levy A. J. A gastro-enteritis outbreak probably due to a bovine strain of vibrio. Yale J Biol Med 1946; 18:243–258
    [Google Scholar]
  14. Jones F. S., Orcutt M., Little R. B. Vibrios (Vibrio jejuni, n. sp.) associated with intestinal disorders of cows and calves. J Exp Med 1931; 53:853–863
    [Google Scholar]
  15. Doyle L. P. The etiology of swine dysentery. Am J Vet Res 1948; 9:50–51
    [Google Scholar]
  16. Griffiths P. L., Park R. W. A. Campylobacters associated with human diarrhoeal disease. J Appl Bacteriol 1990; 69:281–301
    [Google Scholar]
  17. Rollins D. M., Colwell R. R. Viable but non-culturable stage of Campylobacter jejuni and its role in the natural aquatic environment. Appl Environ Microbiol 1986; 52:531–538
    [Google Scholar]
  18. Jones D. M., Sutcliffe E. M., Curry A. Recovery of viable but non-culturable Campylobacter jejuni . J Gen Microbiol 1991; 137:2477–2482
    [Google Scholar]
  19. Stern N. J., Jones D. M., Wesley I. V., Rollins D. M. Colonisation of chicks by non-culturable Campylobacter spp . Lett Appl Microbiol 1994; 18:333–336
    [Google Scholar]
  20. Medema G. J., Schets F. M., Van de Giessen A. W., Havelaar A. H. Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni . J Appl Bacteriol 1992; 72:512–516
    [Google Scholar]
  21. Kim N. W., Bingham H., Khawaja R. Physical map of Campylobacter jejuni TGH9011 and localization of 10 genetic markers by use of pulsed-field gel electrophoresis. J Bacteriol 1992; 174:3494–3498
    [Google Scholar]
  22. Taylor D. E., Eaton M., Yan W., Chang N. Genome maps of Campylobacter jejuni and Campylobacter coli . J Bacteriol 1992; 174:2332–2337
    [Google Scholar]
  23. Nuijten P. J. M., Bartels C., Bleumink-Pluym N. M. C., Gaastra W., Van der Zeijst B. A. M. Size and physical map of the Campylobacter jejuni chromosome. Nucleic Acids Res 1990; 18:6211–6214
    [Google Scholar]
  24. Chang N., Taylor D. E. Use of pulsed-field agarose gel electro phoresis to size genomes of Campylobacter species and to construct a Sail map of Campylobacter jejuni UA580. JBacteriol 1990; 172:5211–5217
    [Google Scholar]
  25. Taylor D. E. Genetics of Campylobacter and Helicobacter . Amu Rev Microbiol 1992; 46:35–64
    [Google Scholar]
  26. Miller J. F., Dower W. J., Tompkins L. S. High-voltage electro poration of bacteria:genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci USA 1988; 85:856–860
    [Google Scholar]
  27. Wang Y., Taylor D. E. Natural transformation in Campylobacter species. J Bacteriol 1990; 172:949–955
    [Google Scholar]
  28. Fyfe J. A. M., Davies J. K. Nucleotide sequence and expression in Escherichia coli of the recA gene of Neisseria gonorrhoeae . Gene 1990; 93:151–156
    [Google Scholar]
  29. Seifert H. S., Ajioka R. S., Marchal C., Sparling P. F., So M. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae . Nature 1988; 336:392–395
    [Google Scholar]
  30. Goodman H. J. K., Woods D. R. Molecular analysis of the Bacteriodes fragilis recA gene. Gene 1990; 94:77–82
    [Google Scholar]
  31. Ramesar R. S., Abratt V., Woods D. R., Rawlings D. E. Nucleotide sequence and expression of a cloned Thiobacillus ferrooxidans recA gene in Escherichia coli . Gene 1989; 78:1–8
    [Google Scholar]
  32. Wang W. B., Tessman E. S. Location of functional regions of the Escherichia coli RecA protein by DNA sequence analysis of RecA protease-constitutive mutants. J Bacteriol 1986; 168:901–910
    [Google Scholar]
  33. Kiernan M., Wren B. W., Ketley J. M. Identification of the Campylobacter jejuni recA gene using a PCR-based strategy. Acta Gastro-Enterol Belg 1993; 56:17
    [Google Scholar]
  34. Guerry P., Pope P. M., Burr D. H., Leifer J., Joseph S. W., Bourgeois A. L. Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect Immun 1994; 62:426–432
    [Google Scholar]
  35. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA 1985; 82:8129–8133
    [Google Scholar]
  36. Labigne-Roussel A., Harel J., Tompkins L. Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni . J Bacteriol 1987; 169:5320–5323
    [Google Scholar]
  37. Butzler J. P., Skirrow M. B. Campylobacter enteritis. Clinics Gastroent 1979; 8:737–765
    [Google Scholar]
  38. Walker R. I., Caldwell M. B., Lee E. C., Guerry P., Trust T. J., Ruiz-Palacios G. M. Pathophysiology of Campylobacter enteritis. Microbiol Rev 1986; 50:81–94
    [Google Scholar]
  39. Skirrow M. B., Blaser M. J. Clinical and epidemiologic considerations. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni-, current status and future trends Washington DC: American Society for Microbiology; 19923–8
    [Google Scholar]
  40. Rhodes K. M., Tattersfield A. E. Guillain-Barre syndrome associated with Campylobacter infection. BMJ 1982; 285:173–174
    [Google Scholar]
  41. Kuroki S., Haruta T., Yoshioka M., Kobayashi Y., Nukina M., Nakanishi H. Guillain-Barre syndrome associated with Campylobacter infection. Pediatr Infect Dis J 1991; 10:149–51
    [Google Scholar]
  42. Mishu B., Blaser M. J. Role of infection due to Campylobacter jejuni in the initiation of Guillain-Barre syndrome. Clin Infect Dis 1993; 17:104–108
    [Google Scholar]
  43. Fujimoto S., Yuki N., Itoh T., Amako K. Specific serotype of Campylobacter jejuni associated with Guillain-Barre syndrome. J Infect Dis 1992; 165:183
    [Google Scholar]
  44. Kuroki S., Saida T., Nukina M. Campylobacter jejuni strains from patients with Guillain-Barre syndrome belong mostly to Penner serogroup 19 and contain beta-N-acetyl-glucosamine residues. Ann Neurol 1993; 3:243–247
    [Google Scholar]
  45. Skirrow M. B. A demographic survey of Campylobacter, Salmonella and Shigella infections in England. A Public Health Laboratory Service survey. Epidemiol Infect 1987; 99:647–657
    [Google Scholar]
  46. Kendall E. J. C., Tanner E. I. Campylobacter enteritis in general practice. J Hyg 1982; 88:155–163
    [Google Scholar]
  47. Sockett P. N., Pearson A. D. Cost implications of human Campylobacter infections. In Kaijser B., Falsen E. (eds) Campylobacter IV Goteburg: Sweden, University of Goteburg; 1988261–264
    [Google Scholar]
  48. Taylor D. N. Campylobacter jejuni infections in developing countries. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 199220–30
    [Google Scholar]
  49. Everest P. H., Goossens H., Butzler J. P. Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli . J Med Microbiol 1992; 37:319–325
    [Google Scholar]
  50. Ruiz-Palacios G. M., Torres J., Torres N. I., Escamilla E., Ruiz-Palacios B. R. Tamayo J. Cholera-like enterotoxin produced by Campylobacter jejuni . Lancet 1983250–253
    [Google Scholar]
  51. Ruiz-Palacios G. M., Lopez-Vidal Y., Torres J., Torres N. Serum antibodies to heat-labile enterotoxin of Campylobacter jejuni . J Infect Dis 1985; 152:413–416
    [Google Scholar]
  52. Ruiz-Palacios G. M., Cervantes L. E., Newburg D. S., Lopez-Vidal Y., Calva J. J. In vitro models for studying Campylobacter infections. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992176–183
    [Google Scholar]
  53. Skirrow M. B. Campylobacter. Lancet 1990; 336:921–923
    [Google Scholar]
  54. Stern N. J. Reservoirs for C. jejuni and approaches for in tervention in poultry. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington, DC: American Society for Microbiology; 199249–60
    [Google Scholar]
  55. Southern J. P., Smith R. M. M., Palmer S. R. Bird attack on milk bottles: possible mode of transmission of Campylobacter jejuni to man. Lancet 1990; 336:1425–1427
    [Google Scholar]
  56. Robinson D. A. Infective dose of Campylobacter jejuni in milk. BMJ 1981; 282:1584
    [Google Scholar]
  57. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J. Experimental Campylobacter jejuni infection in humans. J Infect Dis 1988; 157:472–479
    [Google Scholar]
  58. Morooka T., Umeda A., Amako K. Motility as an intestinal colonization factor for Campylobacter jejuni . J Gen Microbiol 1985; 131:1973–1980
    [Google Scholar]
  59. Newell D. G., McBride H., Dolby J. M. Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J Hyg 1985; 95:217–227
    [Google Scholar]
  60. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I. Reversible expression of flagella in Campylobacter jejuni . Infect Immun 1985; 50:941–943
    [Google Scholar]
  61. Aguero-Rosenfeld M. E., Yang X. H., Nachamkin I. Infection of adult Syrian hamsters with flagellar variants of Campylobacter jejuni . Infect Immun 1990; 58:2214–2219
    [Google Scholar]
  62. McSweegan E., Walker R. I. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect Immun 1986; 53:141–148
    [Google Scholar]
  63. Wenman W. M., Chain J., Louie T. J. Antigenic analysis of Campylobacter flagellar protein and other proteins. J Clin Microbiol 1985; 21:108–112
    [Google Scholar]
  64. Harris L. A., Logan S. M., Guerry P., Trust T. J. Antigenic variation of Campylobacter flagella. J Bacteriol 1987; 169:5066–5071
    [Google Scholar]
  65. Nuijten P. J. M., Wassenaar T. M., Newell D. G., Van Der Zeijst B. A. M. Molecular characterization and analysis of Campylobacter jejuni flagellin genes and proteins. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992282–96
    [Google Scholar]
  66. Guerry P., Alm R. A., Power M. E., Trust T. J. Molecular and structural analysis of Campylobacter flagellin. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992267–281
    [Google Scholar]
  67. Grant C. C. R., Konkel M. E., Cieplak W., Tompkins L. S. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 1993; 61:1764–1771
    [Google Scholar]
  68. Wassenaar T. M., Bleumink-Pluym N. M. C., van der Zeijst B. A. M. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EM BO J 1991; 10:2055–2061
    [Google Scholar]
  69. Wassenaar T. M., van der Zeijst B. A. M., Ayling R., Newell D. G. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 1993; 139:1171–1175
    [Google Scholar]
  70. Nachamkin I., Yang X. H., Stern N. J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 1993; 59:1269–1273
    [Google Scholar]
  71. Ferrero R. L., Lee A. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod shaped bacteria. J Gen Microbiol 1988; 134:53–59
    [Google Scholar]
  72. Lee A., O’Rourke J. L., Barrington P. J., Trust T. J. Mucous colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect Immun 1986; 51:536–546
    [Google Scholar]
  73. deMelo M. A., Pechere J. C. Identification of Campylobacter jejuni surface proteins that bind to eucaryotic cells in vitro. Infect Immun 1990; 58:1749–1756
    [Google Scholar]
  74. Fauchere J. L., Kervella M., Pages J. M., Fendri C. In vitro study of virulence factors of enteric Campylobacter spp. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992168–175
    [Google Scholar]
  75. Kervella M., Pages J. M., Pei Z., Grollier G., Blaser M. J., Fauchere J. L. Isolation and characterization of two Campylobacter glycine-extracted proteins that bind to HeLa cell membranes. Infect Immun 1993; 61:3440–3448
    [Google Scholar]
  76. Pei Z., Blaser M. J. P. E. B. I. the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 1993; 268:18717–18725
    [Google Scholar]
  77. Russell R. G., O’Donnoghue M., Blake D. C., Zulty J., DeTolla L. J. Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatto . J Infect Dis 1993; 168:210–215
    [Google Scholar]
  78. Van Spreeuwel J. P., Duursma G. C., Meijer C. J. L. M., Bax R., Rosekrans P. C. M., Lindeman J. Campylobacter colitis: histological, immunohistochemical and ultrastructural findings. Gut 1985; 26:945–951
    [Google Scholar]
  79. Babakhani F. K., Joens L. A. Primary swine intestinal cells as a model for studying Campylobacter jejuni invasiveness. Infect Immun 1993; 61:2723–2726
    [Google Scholar]
  80. Fauchere J. L., Rosenau A., Veron M., Moyen E. N., Richard S., Pfister A. Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect Immun 1986; 54:283–287
    [Google Scholar]
  81. Konkel M. E., Joens L. A. Adhesion to and invasion of HEp-2 Cells by Campylobacter spp. Infect Immun 1989; 57:2984–2990
    [Google Scholar]
  82. deMelo M. A., Gabbiani G., Pèchere J. C. Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 Cells. Infect Immun 1989; 57:2214–2222
    [Google Scholar]
  83. Oelschlaeger T. A., Guerry P., Kopecko D. J. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii . Proc Natl Acad Sci USA 1993; 90:6884–6888
    [Google Scholar]
  84. Konkel M. E., Cieplak W. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization. Infect Immun 1992; 60:4945–4949
    [Google Scholar]
  85. Panigrahi P., Losonsky G., DeTolla L. J., Morris J. G. Human immune response to Campylobacter jejuni proteins expressed in vivo . Infect Immun 1992; 60:4938–4944
    [Google Scholar]
  86. Konkel M. E., Hayes S. F., Joens L. A., Cieplak W. Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microb Pathog 1992; 13:357–370
    [Google Scholar]
  87. Russell R. G., Blake D. C. Cell association and invasion of Caco-2 cells by Campylobacter jejuni. Infect Immun 1994; 62:3773–3779
    [Google Scholar]
  88. Konkel M. E., Mead D. J., Hayes S. F., Cieplak W. Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures. J Infect Dis 1992; 166:308–315
    [Google Scholar]
  89. Finlay B. B., Gumbiner B., Falkow S. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol 1988; 107:221–230
    [Google Scholar]
  90. Finlay B. B., Falkow S. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis 1990; 162:1096–1106
    [Google Scholar]
  91. Sansonetti P. J., Arondel J., Fontaine A., d’Hauteville H., Bemardini M. L. OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 1991; 9:416–422
    [Google Scholar]
  92. Hale T. L. Genetic basis of virulence in Shigella species. Microbiol Rev 1991; 55:206–224
    [Google Scholar]
  93. Walker R. I., Rollins D. M., Burr D. H. Studies of Campylobacter infection in the adult rabbit. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992139–147
    [Google Scholar]
  94. Walker R. I., Schmauder-Chock E. A., Parker J. L., Burr D. Selective association and transport of Campylobacter jejuni through M cells of rabbit Peyer’s patches. Can J Microbiol 1988; 34:1142–1147
    [Google Scholar]
  95. Kiehlbauch J. A., Albach R. A., Baum L. L., Chang K. P. Phago cytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect Immun 1985; 48:446–451
    [Google Scholar]
  96. Everest P. H., Goossens H., Sibbons P. Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J Med Microbiol 1993; 38:316–321
    [Google Scholar]
  97. Blaser M. J., Smith P. F., Kohler P. F. Susceptibility of Campylobacter isolates to the bacteriocidal activity of human serum. J Infect Dis 1985; 151:227–235
    [Google Scholar]
  98. Johnson K., Charles I., Dougan G. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 1991; 5:401–407
    [Google Scholar]
  99. Lipinska B., Fayet O., Baird L., Georgopoulos C. Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 1989; 171:1574–1584
    [Google Scholar]
  100. Roop R. M., Fletcher T. W., Sriranganathan N. M., Boyle S. M., Schurig G. G. Identification of an immunoreactive Brucella abortus HtrA stress response protein homolog. Infect Immun 1994; 62:1000–1007
    [Google Scholar]
  101. Kleanthous H. Molecular studies on the pathogenicity of Helicobacter pylori (Dissertation). University of London; London: 1994
    [Google Scholar]
  102. Wren B. W., Colby S. M., Cubberley R. R., Pallen M. J. Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 1992; 99:287–292
    [Google Scholar]
  103. Wren B. W., Henderson J., Ketley J. M. A PCR-based strategy for the rapid construction of defined bacterial mutants. Biotechniques 1994; 16:7–8
    [Google Scholar]
  104. Russell R. G. Campylobacter jejuni colitis and immunity in primates:epidemiology of natural infection. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992148–157
    [Google Scholar]
  105. Fox J. G. In vivo models of enteric Campylobacteriosis: natural and experimental infections. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992131–138
    [Google Scholar]
  106. Everest P. H., Cole A. T., Hawkey C. J. Roles of leukotriene B4, prostaglandin E2, and cyclic AMP in Campylobacter jejuni-induced intestinal fluid secretion. Infect Immun 1993; 61:4885–4887
    [Google Scholar]
  107. Perez-Perez G. I., Taylor D. N., Echeverria P. D., Blaser M. J. Lack of evidence of enterotoxin involvement in pathogenesis of Campylobacter diarrhea. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992184–192
    [Google Scholar]
  108. Moore M. A., Blaser M. J., Perez-Perez G. I., O’Brien A. D. Production of a Shiga-like cytotoxin by Campylobacter . Microb Pathog 1988; 4:455–462
    [Google Scholar]
  109. Johnson W. M., Lior H. Toxins produced by Campylobacter jejuni and Campylobacter coli . Lancet 1984; 1:229–230
    [Google Scholar]
  110. Guerrant R. L., Wanke C. A., Pennie R. A., Barrett L. J., Lima A. A. M., O’Brien A. D. Production of a unique cytotoxin by Campylobacter jejuni . Infect Immun 1987; 55:2526–2530
    [Google Scholar]
  111. Mahajan S., Rodgers F. G. Isolation, characterization, and host-cell-binding properties of a cytotoxin from Campylobacter jejuni . J Clin Microbiol 1990; 28:1314–1320
    [Google Scholar]
  112. Kita E., Oku D., Hamuro A. Hepatotoxic activity of Campylobacter jejuni . J Med Microbiol 1990; 33:171–182
    [Google Scholar]
  113. Cover T. L., Perez-Perez G. I., Blaser M. J. Evaluation of cytotoxic activity in fecal filtrates from patients with Campylobacter jejuni or Campylobacter coli enteritis. FEMS Microbiol Lett 1990; 70:301–304
    [Google Scholar]
  114. Pickett C. L., Auffenberg T., Pesci E. C., Sheen V. L., Jusuf S. S. D. Iron acquisition and hemolysin production by Campylobacter jejuni . Infect Immun 1992; 60:3872–3877
    [Google Scholar]
  115. Johnson W. M., Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb Pathog 1988; 4:115–126
    [Google Scholar]
  116. Daikoku T., Suzuki S., Oka S., Takama K. Profiles of enterotoxin and cytotoxin production in Campylobacter jejuni and C. coli . FEMS Microbiol Lett 1989; 58:33–36
    [Google Scholar]
  117. Guerrant R. L., Fang G., Pennie R. A., Pearson R. D. In vitro models for studying Campylobacter jejuni infections. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992160–167
    [Google Scholar]
  118. Bag P. K., Ramamurthy T., Nair U. B. Evidence for the presence of a receptor for the cytolethal distending toxin (CLDT) of Campylobacter jejuni on CHO and HeLa cell membranes and development of a receptor-based enzyme-linked immunosorbent assay for detection of CLDT. FEMS Microbiol Lett 1993; 114:285–292
    [Google Scholar]
  119. McCardell B. A., Madden J. M., Stanfield J. T. Effect of iron concentration on toxin production in Campylobacter jejuni and Campylobacter coli . Can J Microbiol 1986; 32:395–401
    [Google Scholar]
  120. Klipstein F. A., Engert R. F. Properties of crude Campylobacter jejuni heat-labile enterotoxin. Infect Immun 1984; 45:314–319
    [Google Scholar]
  121. Saha S. K., Sanyal S. C. Production and characterisation of Campylobacter jejuni enterotoxin in a synthetic medium and its assay in rat ileal loops. FEMS Microbiol Lett 1990; 67:333–338
    [Google Scholar]
  122. McCardell B. A., Madden J. M., Lee E. C. Production of cholera like toxin by Campylobacter jejuni/coli . Lancet 1984; 1:448–449
    [Google Scholar]
  123. Klipstein F. A., Engert R. F. Immunological relationship of the B subunits of Campylobacter jejuni and Escherichia coli heat-labile enterotoxins. Infect Immun 1985; 48:629–633
    [Google Scholar]
  124. McCardell B. A., Madden J. M., Lee E. C. Campylobacter jejuni and Campylobacter coli production of a cytotonic toxin immunologically similar to cholera toxin. J Food Protection 1984; 47:943–949
    [Google Scholar]
  125. Goossens H., Butzler J. P., Takeda Y. Demonstration of cholera like enterotoxin production by Campylobacter jejuni . FEMS Microbiol Lett 1985; 29:73–76
    [Google Scholar]
  126. Bag P. K., Ramamurthy T., Takeda Y., Pal S. C., Nair G. B. Identification of subunits of cholera toxin in stool specimens of patients with campylobacteriosis by Western immunoblotting. Biomed Lett 1992; 47:375–382
    [Google Scholar]
  127. Suzuki S., Kawaguchi M., Mizuno K., Takama K., Yuki N. Immunological properties and ganglioside recognitions by Campylobacter jejuni-enterotoxin and cholera toxin. FEMS Immunol Med Microbiol 1994; 8:207–212
    [Google Scholar]
  128. Baig B. H., Wachsmuth I. K., Morris G. K., Hill W. E. Probing of Campylobacter jejuni with DNA coding for Escherichia coli heat-labile enterotoxin. J Infect Dis 1986; 154:542
    [Google Scholar]
  129. Calva E., Torres J., Vazquez M., Angeles V., de la Vega H., Ruiz-Palacios G. M. Campylobacter jejuni chromosomal sequences that hybridize to Vibrio cholerae and Escherichia coli LT enterotoxin genes. Gene 1989; 75:243–251
    [Google Scholar]
  130. Mathan V. I., Rajan D. P., Klipstein F. A., Engert R. F. Enterotoxigenic Campylobacter jejuni among children in South India. Lancet 1984981
    [Google Scholar]
  131. Konkel M. E., Lobet Y., Cieplak W. Examination of multiple isolates of Campylobacter jejuni for evidence of cholera toxin-like activity. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC,: American Society for Microbiology; 1992193–198
    [Google Scholar]
  132. Perez-Perez G. I., Cohn D. L., Guerrant R. L., Patton C. M., Reller L. B., Blaser M. J. Clinical and immunologic significance of cholera-like toxin and cytotoxin production by Campylobacter species in patients with acute inflammatory diarrhea in the USA. J Infect Dis 1989; 160:460–468
    [Google Scholar]
  133. Demarco de Hormaeche R., Macpherson A., Bowe F., Hormaeche C. E. Alterations of the LPS determine virulence of Neisseria gonorrhoeae in guinea-pig subcutaneous chambers. Microb Pathog 1991; 11:159–170
    [Google Scholar]
  134. Moxon R. E., Maskell D. Haemophilus influenzae lipopoly-saccharide: The biochemistry and biology of a virulence factor. In Hormaeche C. E., Penn C. W., Smyth C. J. (eds) Molecular biology of bacterial infection: current status and future perspectives vol 49 Cambridge: Cambridge University Press; 199275–96
    [Google Scholar]
  135. Mills S. D., Aspinall G. O., McDonald A. G., Raju T. S., Kurjanczyk L. A., Penner J. L. Lipopolysaccharide antigens of Campylobacter jejuni . In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni: current status and future trends Washington DC: American Society for Microbiology; 1992223–229
    [Google Scholar]
  136. Aspinall G. O., McDonald A. G., Pang H. Structures of the O chains from lipopolysaccharides of Campylobacter jejuni serotypes 0:23 and 0:36. Carbohydr Res 1992; 231:13–30
    [Google Scholar]
  137. Aspinall G. O., McDonald A. G., Raju T. S., Pang H., Moran A. P., Penner J. L. Chemical structures of the core regions of Campylobacter jejuni serotypes 0:1, 0:4, 0:23, and 0:36 lipopolysaccharides. Eur J Biochem 1993; 213:1017–1027
    [Google Scholar]
  138. Aspinall G. O., McDonald A. G., Raju T. S. Chemical structure of the core region of Campylobacter jejuni serotype 0:2 lipopolysaccharide. Eur J Biochem 1993; 213:1029–1037
    [Google Scholar]
  139. Aspinall G. O., McDonald A. G., Raju T. S. Serological diversity and chemical structures of Campylobacter jejuni low-molecular-weight lipopolysaccharides. J Bacteriol 1992; 174:1324–1332
    [Google Scholar]
  140. Conrad R. S., Galanos C. Characterization of Campylobacter jejuni lipopolysaccharide. Curr Microbiol 1990; 21:377–379
    [Google Scholar]
  141. Aspinall G. O., McDonald A. G., Pang H., Kurjanczyk L. A., Penner J. L. Lipopolysaccharide of Campylobacter coli serotype 0:30. Fractionation and structure of liberated core oligosaccharide. J Biol Chem 1993; 268:6263–6268
    [Google Scholar]
  142. Moran A. P., Rietschel E. T., Kosunen T. U., Zahringer U. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2, 3-diamino-2, 3-dideoxy-d-glucose. J. Bacterial 1991; 173:618–626
    [Google Scholar]
  143. Calderwood S., Knapp S., Peterson K., Taylor R., Mekalanos J. J. Coordinate regulation of virulence determinants. In Fehrenbach F. J. (eds) Bacterial protein toxins Gustav Fischer: Stuttgart, Zentralbl Bakteriol Suppl; 1988; 17169–175
    [Google Scholar]
  144. Bagg A., Neilands J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 1987; 51:509–518
    [Google Scholar]
  145. Bjorn M. J., Iglewski B. H., Ives S. K., Sadoflf J. C., Vasil M. L. Effect of iron on yields of exotoxin A in cultures of Pseudomonas aeruginosa PA-103. Infect Immun 1978; 19:785–791
    [Google Scholar]
  146. Bjorn M. J., Sokol P. A., Iglewski B. H. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. J Bacteriol 1979; 138:193–200
    [Google Scholar]
  147. Calderwood S. B., Mekalanos J. J. Iron regulation of shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol 1987; 169:4759–4764
    [Google Scholar]
  148. Dubos R. J., Geiger J. W. Preparation and properties of Shiga toxin and toxoid. J Exp Med 1946; 84:143–156
    [Google Scholar]
  149. Pappenheimer A. M. The pathogenesis of diphtheria. Symposium of the Society for General Microbiology 1955; 5:40–56
    [Google Scholar]
  150. Calderwood S. B., Mekalanos J. J. Confirmation of the Furoperator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 1988; 170:1015–1017
    [Google Scholar]
  151. Hantke K. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. MGG 1981; 182:288–292
    [Google Scholar]
  152. Litwin C. M., Boyko S. A., Calderwood S. B. Cloning, sequencing, and transcriptional regulation of the Vibrio cholerae fur gene. J Bacteriol 1992; 174:1897–1903
    [Google Scholar]
  153. Litwin C. M., Calderwood S. B. Cloning and genetic analysis of the Vibrio vulnificus fur gene and construction of a fur mutant by in vivo marker exchange. J Bacteriol 1993; 175:706–715
    [Google Scholar]
  154. Waldbeser L. S., Tolmasky M. E., Actis L. A., Crosa J. H. Mechanisms for negative regulation by iron of the fat A outer membrane protein gene expression in Vibrio anguillarum 775. J Biol Chem 1993; 268:10433–10439
    [Google Scholar]
  155. Staggs T. M., Perry R. D. Identification and cloning for a fur regulatory gene in Yersinia pestis . J Bacteriol 1991; 173:417–425
    [Google Scholar]
  156. Prince R. W., Cox C. D., Vasil M. L. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene . J Bacteriol 1993; 175:2589–2598
    [Google Scholar]
  157. Berish S. A., Subbarao S., Chen C. Y., Trees D. L., Morse S. A. Identification and cloning of a fur homolog from Neisseria gonorrhoeae . Infect Immun 1993; 61:4599–4606
    [Google Scholar]
  158. Thompson S. A., Wang L. L., West A., Sparling P. F. Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol 1993; 175:811–818
    [Google Scholar]
  159. Chen L., James L. P., Helmann J. D. Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 1993; 175:5428–5437
    [Google Scholar]
  160. Boyd J., Oza M. N., Murphy J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae . Proc Natl Acad Sci USA 1990; 87:5968–5972
    [Google Scholar]
  161. Field L. H., Headley V. L., Payne S. M., Berry L. J. Influence of iron on growth, morphology, outer membrane protein composition, and synthesis of siderophores in Campylobacter jejuni . Infect Immun 1986; 54:126–132
    [Google Scholar]
  162. Wooldridge K. G., Williams P. H., Ketley J. M. Iron-responsive genetic regulation in Campylobacter jejuni: cloning and characterisation of a fur homolog. J Bacteriol 1994; 176:5852–5856
    [Google Scholar]
  163. De Lorenzo V., Herrero M., Giovannini F., Neilands J. B. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli . Eur J Biochem 1988; 173:537–546
    [Google Scholar]
  164. Coy M., Neilands J. B. Structural dynamics and functional domains of the fur protein. Biochemistry 1991; 30:8201–8210
    [Google Scholar]
  165. Deretic V., Konyecsni W. M., Mohr C. D., Martin D. W., Hibler N. S. Common denominators of promoter control in Pseudomonas and other bacteria. Bio/Technology 1989; 7:1249–1254
    [Google Scholar]
  166. Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450–490
    [Google Scholar]
  167. Parkinson J. S. Signal transduction schemes of bacteria. Cell 1993; 73:857–871
    [Google Scholar]
  168. Wanner B. L. Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria?. J Bacteriol 1992; 174:2053–2058
    [Google Scholar]
  169. Aim R. A., Guerry P., Trust T. J. The Campylobacter sigma 54 flaB flagellin promoter is subject to environmental regulation. J Bacteriol 1993; 175:4448–1455
    [Google Scholar]
  170. Miller S., Pesci E. C., Pickett C. L. A Campylobacter jejuni homolog of the LcrD/FlbF family of proteins is necessary for flagellar biogenesis. Infect Immun 1993; 61:2930–2936
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-5-312
Loading
/content/journal/jmm/10.1099/00222615-42-5-312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error