1887

Abstract

Summary

A rapid method for genotyping based on PCR-fingerprinting with fluorescent primers was evaluated. Automated laser fluorescence analysis (ALFA) enabled on-line generation of high resolution DNA-fingerprints during poly-acrylamide gel electrophoresis of randomly amplified polymorphic DNA (RAPD) products. The results were in concordance with macro-restriction fragment patterns produced by pulsed-field gel electrophoresis (PFGE) of ApaI digests of chromosomal DNA. RAPD-ALFA was able to identify homologous strains suggestive of horizontal transmission in < 8 h after colonies were obtained on solid media, whereas PFGE analysis took c. 90 h. Speed and digitised data format renders RAPD-ALFA attractive for routine in-house epidemiological screening of isolates from intensive care and other hospital units.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-43-6-446
1995-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/43/6/medmicro-43-6-446.html?itemId=/content/journal/jmm/10.1099/00222615-43-6-446&mimeType=html&fmt=ahah

References

  1. Van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev 1994; 7:174–184
    [Google Scholar]
  2. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990; 18:7213–7218
    [Google Scholar]
  3. Caetano-Anollés G., Bassam B. J., Gresshoff P. M. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 1991; 9:553–557
    [Google Scholar]
  4. Struelens M. J., Carlier E., Maes N., Serruys E., Quint W. G. V., Van Belkum A. Nosocomial colonization and infection with multiresistant Acinetobacter baumannii: outbreak delineation using DNA macrorestriction analysis and PCR-fingerprinting. J Hosp Infect 1993; 25:15–32
    [Google Scholar]
  5. Tenover F. C., Arbeit R., Archer G. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol 1994; 32:407–415
    [Google Scholar]
  6. Grundmann H., Schneider C., Hartung D., Daschner F. D., Pitt T. L. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol 1995; 33:528–534
    [Google Scholar]
  7. Arbeit R. D., Maslow J. N., Mulligan M. E. Polymerase chain reaction-mediated genotyping in microbial epidemiology. Reply. Clin Infect Dis 1994; 18:1018–1019
    [Google Scholar]
  8. Meunier J. R., Grimont P. A. D. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol 1993; 144:373–379
    [Google Scholar]
  9. Bouvet P. J. M., Grimont P. A. D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int J Syst Bacteriol 1986; 36:228–240
    [Google Scholar]
  10. Barry T., Powell R., Gannon F. A general method to generate DNA probes for microorganisms. Bio/Technology 1990; 8:233–236
    [Google Scholar]
  11. Ansorge W., Sproat B. S., Stegemann J., Schwager C. A non-radioactive automated method for DNA sequence termination. J Biochem Biophys Med 1986; 13:315–323
    [Google Scholar]
  12. Beck-Sague C. M., Jarwis W. R., Brook J. H. Epidemic bacteremia due to Acinetobacter baumannii in five intensive care units. Am J Epidemiol 1990; 132:723–733
    [Google Scholar]
  13. Seifert H., Boullion B., Schulze A., Pulverer G. Plasmid DNA profiles of Acinetobacter baumannii: clinical application in a complex endemic setting. Infect Control Hosp Epidemiol 1994; 15:520–528
    [Google Scholar]
  14. Stone J. W., Das B. C. Investigation of an outbreak of infection with Acinetobacter calcoaceticus in a special care baby unit. J Hosp Infect 1986; 7:42–48
    [Google Scholar]
  15. Gräser Y., Klare I., Halle E. Epidemiological study of an Acinetobacter baumannii outbreak by using polymerase chain reaction fingerprinting. J Clin Microbiol 1993; 31:2417–2420
    [Google Scholar]
  16. Vila J., Marcos A., Llovet T., Coll P., Jimenez de Anta T. A comparative study of ribotyping and arbitrarily primed polymerase chain reaction for investigation of hospital outbreaks of Acinetobacter baumannii infection. J Med Microbiol 1994; 41:244–249
    [Google Scholar]
  17. Voss H., Stegemann J., Schwager C. High-speed automated DNA fragment analysis for genome mapping by restriction fingerprinting. Methods Mol Cell Biol 1992; 3:77–82
    [Google Scholar]
  18. Cancilla M. R., Powell J. B., Hillier A. J., Davidson B. E. Rapid genomic fingerprinting for Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol 1992; 58:1772–1775
    [Google Scholar]
  19. Maslow J. N., Mulligan M. E., Arbeit R. D. Molecular epidemiology : application of contemporary techniques to typing of microorganisms. Clin Infect Dis 1993; 17:153–164
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-43-6-446
Loading
/content/journal/jmm/10.1099/00222615-43-6-446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error