1887

Abstract

The reported incidence of fungal infections associated with non- species from the genus is increasing. Most of these infections occur in immunocompromised patients, particularly those infected with HIV. The role of molecular genetic techniques alongside the existing techniques for the identification and typing of these organisms is discussed. Species-specific genomic DNA fragments cloned from and have been developed for identification and strain typing. Analysis of tRNA profiles has been shown to be effective for the identification of and A PCR method employing primers complimentary to large ribosomal subunit genes and the lanosterol-α-demethylase gene has been applied for several species, including and Strain typing by comparison of genomic DNA fingerprints has been demonstrated for and following hybridisation analysis with species-specific probes. Synthetic oligonucleotide probes—which do not have to be species-specific and which can detect minor polymorphisms—have also been used for strain typing of isolates of several non- species. Random amplification of polymorphic DNA (RAPD) has also been used for analysis of and isolates. The potential for the application of these and other techniques to spp. taxonomy—and the example of a recently discovered novel species, —is discussed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-6-399
1996-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/6/medmicro-44-6-399.html?itemId=/content/journal/jmm/10.1099/00222615-44-6-399&mimeType=html&fmt=ahah

References

  1. Odds F. C. Pathogenesis of candidosis. In Odds F. C. (ed) Candida and candidosis 2nd edn London: Bailliére Tindall; 1988
    [Google Scholar]
  2. Powderly W. G. Mucosal candidiasis caused by non-albicans species of Candida in HIV-positive patients. AIDS 1992; 6:604–605
    [Google Scholar]
  3. Coleman D. C., Bennett D. E., Gallagher P. J. Oral candidiasis and HIV infection; antifungal drug resistance and changes in Candida population dynamics. In Greenspan J. S., Greenspan D. (eds) Oral manifestations of HIV infection Chicago: Quintessence Publishing Co., Inc; 1995112–118
    [Google Scholar]
  4. Johnson E. M., Wamock D. W., Luker J., Porter S. R., Scully C. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother 1995; 35:103–114
    [Google Scholar]
  5. Ruhnke M., Eigler A., Engelmann E., Geiseler B., Trautmann M. Correlation between antifungal susceptibility testing of Candida isolates from patients with HIV infection and clinical results after treatment with fluconazole. Infection 1994; 22:132–136
    [Google Scholar]
  6. Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 1995; 39:1–8
    [Google Scholar]
  7. Coleman D. C., Bennett D. E., Sullivan D. J. Oral Candida in HIV infection and AIDS: new perspectives/new approaches. Crit Rev Microbiol 1993; 19:61–82
    [Google Scholar]
  8. Millon L., Manteaux A., Reboux G. Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J Clin Microbiol 1994; 32:1115–1118
    [Google Scholar]
  9. Barnett J. A., Payne R. W., Yarrow D. Descriptions of the species, arranged alphabetically. In Barnett J. A., Payne R. W., Yarrow D. (eds) Yeasts: characteristics and identification 2nd edn Cambridge: Cambridge University Press; 199079–695
    [Google Scholar]
  10. Samaranayake L. P. Oral mycoses in HIV infection. Oral Surg Oral Med Oral Pathol 1992; 73:171–180
    [Google Scholar]
  11. Pfaller M. A. Epidemiology and control of fungal infections. Clin Infect Dis 1994; 19: Suppl 1S8–13
    [Google Scholar]
  12. Horn R., Wong B., Kiehn T. E., Armstrong D. Fungemia in a cancer hospital: changing frequency, earlier onset, and results of therapy. Rev Infect Dis 1985; 7:646–655
    [Google Scholar]
  13. Soll D. R., Staebell M., Langtimm C., Pfaller M., Hicks J., Rao T. V. G. Multiple Candida strains in the course of a single systemic infection. J Clin Microbiol 1988; 26:1448–1459
    [Google Scholar]
  14. Wingard J. R., Merz W. G., Rinaldi M. G., Johnson T. R., Karp J. E., Saral R. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N Engl J Med 1991; 325:1274–1277
    [Google Scholar]
  15. Sanchez V., Vazquez J. A., Barth-Jones D., Dembry L., Sobel J. D., Zervos M. J. Epidemiology of nosocomial acquisition of Candida lusitaniae. J Clin Microbiol 1992; 30:3005–3008
    [Google Scholar]
  16. Law D., Moore C. B., Wardle H. M., Ganguli L. A., Keaney M. G. L., Denning D. W. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother 1994; 34:659–668
    [Google Scholar]
  17. Samaranayake Y. H., Samaranayake L. P. Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol 1994; 41:295–310
    [Google Scholar]
  18. Sullivan D. J., Westemeng T. J., Haynes K. A., Bennett D. E., Coleman D. C. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995; 141:1507–1521
    [Google Scholar]
  19. Alsina A., Mason M., Uphoff R. A., Riggsby W. S., Becker J. M., Murphy D. Catheter-associated Candida utilis fungemia in a patient with acquired immunodeficiency syndrome: species verification with a molecular probe. J Clin Microbiol 1988; 26:621–624
    [Google Scholar]
  20. Holmberg K., Meyer R. D. Fungal infections in patients with AIDS and AIDS-related complex. Scand J Infect Dis 1986; 18:179–192
    [Google Scholar]
  21. Tavitian A., Raufman, J-P., Rosenthal L. E. Oral candidiasis as a marker for esophageal candidiasis in the acquired immune-deficiency syndrome. Ann Intern Med 1986; 104:54–55
    [Google Scholar]
  22. Wamock D. W. Azole drug resistance in Candida species. J Med Microbiol 1992; 37:225–226
    [Google Scholar]
  23. Odds F. C. Sabouraud(’s) agar. J Med Vet Mycol 1991; 29:355–359
    [Google Scholar]
  24. Samaranayake L. P., MacFarlane T. W., Williamson M. I. Comparison of Sabouraud dextrose and Pagano-Levin agar media for detection and isolation of yeasts from oral samples. J Clin Microbiol 1987; 25:162–164
    [Google Scholar]
  25. Pagano J., Levin J. D., Trejo W. Diagnostic medium for differentiation of species of Candida. Antibiot Ann 1958; 1957–58:137–143
    [Google Scholar]
  26. Costa S. O. P., de Lourdes Branco C. Evaluation of a molybdenum culture medium as selective and differential for yeasts. J Pathol Bacteriol 1964; 87:428–431
    [Google Scholar]
  27. Bump C. M., Kunz L. J. Routine identification of yeasts with the aid of molybdate-agar medium. Appl Microbiol 1968; 16:1503–1506
    [Google Scholar]
  28. Nickerson W. J. Reduction of inorganic substances by yeasts. I. Extracellular reduction of sulfite by species of Candida. J Infect Dis 1953; 93:43–56
    [Google Scholar]
  29. Odds F. C., Bemaerts R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol 1994; 32:1923–1929
    [Google Scholar]
  30. Hunter P. R., Fraser C. A. M. Application of a numerical index of discriminatory power to a comparison of four physiochemical typing methods for Candida albicans. J Clin Microbiol 1989; 27:2156–2160
    [Google Scholar]
  31. Berger S. A. Lack of precision in commercial identification systems: correction using Bayesian analysis. J Appl Bacteriol 1990; 68:285–288
    [Google Scholar]
  32. Gallagher P. J., Bennett D. E., Henman M. C. Reduced azole susceptibility of oral isolates of Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation. J Gen Microbiol 1992; 138:1901–1911
    [Google Scholar]
  33. Sullivan D., Bennett D., Henman M. Oligonucleotide fingerprinting of isolates of Candida species other than C. albicans and of atypical Candida species from human immunodeficiency virus-positive and AIDS patients. J Clin Microbiol 1993; 31:2124–2133
    [Google Scholar]
  34. Magee B. B., D’Souza T. M., Magee P. T. Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species. J Bacteriol 1987; 169:1639–1643
    [Google Scholar]
  35. Mason M. M., Lasker B. A., Riggsby W. S. Molecular probe for identification of medically important Candida species and Torulopsis glabrata. J Clin Microbiol 1987; 25:563–566
    [Google Scholar]
  36. Monod M., Porchet S., Baudraz-Rosselet F., Frenk E. The identification of pathogenic yeast strains by electrophoretic analysis of their chromosomes. J Med Microbiol 1990; 32:123–129
    [Google Scholar]
  37. Lehmann P. F., Lin D., Lasker B. A. Genotypic identification and characterization of species and strains within the genus Candida by using random amplified polymorphic DNA. J Clin Microbiol 1992; 30:3249–3254
    [Google Scholar]
  38. Miyakawa Y., Mabuchi T., Kagaya K., Fukazawa Y. Isolation and characterization of a species-specific DNA fragment for detection of Candida albicans by polymerase chain reaction. J Clin Microbiol 1992; 30:894–900
    [Google Scholar]
  39. Crampin A. C., Matthews R. C. Application of the polymerase chain reaction to the diagnosis of candidosis by amplification of an HSP 90 gene fragment. J Med Microbiol 199339233–238
    [Google Scholar]
  40. Niesters H. G. M., Goessens W. H. F., Meis J. F. M. G., Quint W. G. V. Rapid, polymerase chain reaction-based identification assays for Candida species. J Clin Microbiol 1993; 31:904–910
    [Google Scholar]
  41. Burgener-Kairuz P., Zuber, J-P., Jaunin P., Buchman T. G., Bille J., Rossier M. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment. J Clin Microbiol 1994; 32:1902–1907
    [Google Scholar]
  42. Carlotti A., Grillot R., Couble A., Villard J. Typing of Candida krusei clinical isolates by restriction endonuclease analysis and hybridization with CkFl,2 DNA probe. J Clin Microbiol 1994; 32:1691–1699
    [Google Scholar]
  43. Check W. A. Molecular techniques shed light on fungal genetics. ASM News 1994; 60:593–596
    [Google Scholar]
  44. Holmes A. R., Cannon R. D., Shepherd M. G., Jenkinson H. F. Detection of Candida albicans and other yeasts in blood by PCR. J Clin Microbiol 1994; 32:228–231
    [Google Scholar]
  45. Fujita S.-I., Lasker B. A., Lott T. J., Reiss E., Morrison C. J. Microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood. J Clin Microbiol 1995; 33:962–967
    [Google Scholar]
  46. Scherer S., Stevens D. A. Application of DNA typing methods to epidemiology and taxonomy of Candida species. J Clin Microbiol 1987; 25:675–679
    [Google Scholar]
  47. Matthews R., Bumie J. Assessment of DNA fingerprinting for rapid identification of outbreaks of systemic candidiasis. BMJ 1989; 298:354–357
    [Google Scholar]
  48. Scherer S., Stevens D. A. A Candida albicans dispersed, repeated gene family and its epidemiologic applications. Proc Natl Acad Sci USA 1988; 85:1452–1456
    [Google Scholar]
  49. Soll D. R., Langtimm C. J., McDowell J., Hicks J., Galask R. High-frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol 1987; 25:1611–1622
    [Google Scholar]
  50. Wickes B. L., Hicks J. B., Merz W. G., Kwon-Chung K. J. The molecular analysis of synonymy among medically important yeasts within the genus Candida. J Gen Microbiol 1992; 138:901–907
    [Google Scholar]
  51. Cheung L. L., Hudson J. B. Development of DNA probes for Candida albicans. Diagn Microbiol Infect Dis 198810171–179
    [Google Scholar]
  52. Holmes A. R., Lee Y. C., Cannon R. D., Jenkinson H. F., Shepherd M. G. Yeast-specific DNA probes and their application for the detection of Candida albicans. J Med Microbiol 1992; 37:346–351
    [Google Scholar]
  53. Santos M. A. S., El-Adlouni C., Cox A. D., Luz J. M., Keith G., Tuite M. F. Transfer RNA profiling: a new method for the identification of pathogenic Candida species. Yeast 1994; 10:625–636
    [Google Scholar]
  54. Saiki R. K., Scharf S., Faloona F. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230:1350–1354
    [Google Scholar]
  55. Botelho A. R., Planta R. J. Specific identification of Candida albicans by hybridization with oligonucleotides derived from ribosomal DNA internal spacers. Yeast 1994; 10:709–717
    [Google Scholar]
  56. Odds F. C., Merson-Davies L. A. Colony variations in Candida species. Mycoses 1989; 32:275–282
    [Google Scholar]
  57. Smith R. A., Hitchcock C. A., Evans E. G. V., Lacey C. J. N., Adams D. J. The identification of Candida albicans strains by restriction fragment length polymorphism analysis of DNA. J Med Vet Mycol 1989; 27:431–134
    [Google Scholar]
  58. Doebbeling B. N., Lehmann P. F., Hollis R. J. Comparison of pulsed-field gel electrophoresis with isoenzyme profiles as a typing system for Candida tropicalis. Clin Infect Dis 1993; 16:377–383
    [Google Scholar]
  59. Branchini M. L., Pfaller M. A., Rhine-Chalberg J., Frempong T., Isenberg H. D. Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis. J Clin Microbiol 1994; 32:452–456
    [Google Scholar]
  60. King D., Rhine-Chalberg J., Pfaller M. A., Moser S. A., Merz W. G. Comparison of four DNA-based methods for strain delineation of Candida lusitaniae. J Clin Microbiol 1995; 33:1467–1470
    [Google Scholar]
  61. Fox B. C., Mobley H. L. T., Wade J. C. The use of a DNA probe for epidemiological studies of candidiasis in immunocompromised hosts. J Infect Dis 1989; 159:488–494
    [Google Scholar]
  62. Schmid J., Odds F. C., Wiselka M. J., Nicholson K. G., Soll D. R. Genetic similarity and maintenance of Candida albicans strains from a group of AIDS patients, demonstrated by DNA fingerprinting. J Clin Microbiol 1992; 30:935–941
    [Google Scholar]
  63. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984; 12:4127–4138
    [Google Scholar]
  64. Meyer W., Koch A., Niemann C., Beyermann B., Epplen J. T., Bomer T. Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr Genet 1991; 19:239–242
    [Google Scholar]
  65. Meyer W., Morawetz R., Börner T., Kubicek C. R. The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate. Curr Genet 1992; 21:27–30
    [Google Scholar]
  66. Wilkinson B. M., Morris L., Adams D. J., Evans E. G. V., Lacey C. J. N., Walmsley R. M. A new, sensitive polynucleotide probe for distinguishing Candida albicans strains and its use with a computer assisted archiving and pattern comparison system. J Med Vet Mycol 1992; 30:123–131
    [Google Scholar]
  67. Haynes K. A., Sullivan D. J., Coleman D. C. Involvement of multiple Cryptococcus neoformans strains in a single episode of cryptococcosis and reinfection with novel strains in recurrent infection demonstrated by random amplification of polymorphic DNA and DNA fingerprinting. J Clin Microbiol 1995; 33:99–102
    [Google Scholar]
  68. Magee B. B., Magee P. T. Electrophoretic karyotypes and chromosome numbers in Candida species. J Gen Microbiol 1987; 133:425–130
    [Google Scholar]
  69. Asakura K., Iwaguchi, S-I., Homma M., Sukai T., Higashide K., Tanaka K. Electrophoretic karyotypes of clinically isolated yeasts of Candida albicans and C. glabrata. J Gen Microbiol 1991; 137:2531–2538
    [Google Scholar]
  70. Carruba G., Pontieri E., De Bemardis F., Martino P., Cassone A. DNA fingerprinting and electrophoretic karyotypes of environmental and clinical isolates of Candida parapsilosis. J Clin Microbiol 1991; 29:916–922
    [Google Scholar]
  71. Khattak M. N., Bumie J. P., Matthews R. C., Oppenheim B. A. Clamped homogeneous electric field gel electrophoresis typing of Torulopsis glabrata isolates causing nosocomial infections. J Clin Microbiol 1992; 30:2211–2215
    [Google Scholar]
  72. Merz W. G., Khazan U., Jabra-Rizk M. A., Wu, L-C., Osterhout G. J., Lehmann P. F. Strain delineation and epidemiology of Candida (Clavispora) lusitaniae. J Clin Microbiol 1992; 30:449–454
    [Google Scholar]
  73. Vazquez J. A., Beckley A., Donabedian S., Sobel J. D., Zervos M. J. Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for Torulopsis glabrata and Candida species other than C. albicans. J Clin Microbiol 1993; 31:2021–2030
    [Google Scholar]
  74. Bostock A., Khattak M. N., Matthews R., Bumie J. Comparison of PCR fingerprinting, by random amplification of polymorphic DNA, with other molecular typing methods for Candida albicans. J Gen Microbiol 1993; 139:2179–2184
    [Google Scholar]
  75. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990; 18:7213–7218
    [Google Scholar]
  76. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535
    [Google Scholar]
  77. Welsh J., McClelland M. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res 1991; 19:5275–5279
    [Google Scholar]
  78. van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev 1994; 7:174–184
    [Google Scholar]
  79. Coutinho H. L. C., Handley B. A., Kay H. E., Stevenson L., Beringer J. E. The effect of colony age on PCR fingerprinting. Lett Appl Microbiol 1993; 17:282–284
    [Google Scholar]
  80. Venugopal G., Mohapatra S., Salo D., Mohapatra S. Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting. Biochem Biophys Res Commun 1993; 197:1382–1387
    [Google Scholar]
  81. Cobb B. D., Clarkson J. M. A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 1994; 22:3801–3805
    [Google Scholar]
  82. Ralph D., McClelland M., Welsh J., Baranton G., Perolat P. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J Bacteriol 1993; 175:973–981
    [Google Scholar]
  83. Taylor N. S., Fox J. G., Akopyants N. S. Long-term colonization with single and multiple strains of Helicobacter pylori assessed by DNA fingerprinting. J Clin Microbiol 1995; 33:918–923
    [Google Scholar]
  84. Akisada T., Harada K., Niimi M., Kamaguchi A. Production of contiguously arranged chlamydospores in Candida albicans. J Gen Microbiol 1983; 129:2327–2330
    [Google Scholar]
  85. Williamson M. I., Samaranayake L. P., MacFarlane T. W. Biotypes of oral Candida albicans and Candida tropicalis isolates. J Med Vet Mycol 1986; 24:81–84
    [Google Scholar]
  86. Kwon-Chung K. J., Wickes B. L., Merz W. G. Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice. Infect Immun 1988; 56:1814–1819
    [Google Scholar]
  87. Kwon-Chung K. J., Riggsby W. S., Uphoff R. A. Genetic differences between type I and type II Candida stellatoidea. Infect Immun 1989; 57:527–532
    [Google Scholar]
  88. Mahrous M., Lott T. J., Meyer S. A., Sawant A. D., Aheam D. G. Electrophoretic karyotyping of typical and atypical Candida albicans. J Clin Microbiol 1990; 28:876–881
    [Google Scholar]
  89. Martinez J. P., Gilm L., Casanova M., Ribot-Lopez J. L., DeLomas J. G., Sentandreu R. Wall mannoproteins in cells from colonial phenotypic variants of Candida albicans. J Gen Microbiol 1990; 136:2421–2432
    [Google Scholar]
  90. Ghannoum M. A., Swairjo I., Soll D. R. Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes. J Med Vet Mycol 1990; 28:103–115
    [Google Scholar]
  91. Wickes B. L., Golin J. E., Kwon-Chung K. J. Chromosomal rearrangement in Candida stellatoidea results in a positive effect on phenotype. Infect Immun 1991; 59:1762–1771
    [Google Scholar]
  92. McCullough M. J., Ross B. C., Dwyer B. D., Reade P. C. Genotype and phenotype of oral Candida albicans from patients infected with the human immunodeficiency virus. Microbiology 1994; 140:1195–1202
    [Google Scholar]
  93. McCullough M., Ross B., Reade P. Characterization of genetically distinct subgroup of Candida albicans strains isolated from oral cavities of patients infected with the human immunodeficiency virus. J Clin Microbiol 1995; 33:696–700
    [Google Scholar]
  94. Boerlin P., Boerlin-Petzold F., Durussel C. Cluster of oral atypical Candida albicans isolates in a group of human immunodeficiency virus-positive drug users. J Clin Microbiol 1995; 33:1129–1135
    [Google Scholar]
  95. Kwon-Chung K. J., Hicks J. B., Lipke P. N. Evidence that Candida stellatoidea type II is a mutant of Candida albicans that does not express sucrose-inhibitable α-glucosidase. Infect Immun 1990; 58:2804–2808
    [Google Scholar]
  96. Lott T. J., Kuykendall R. J., Welbel S. F., Pramanik A., Lasker B. R. Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet 1993; 23:463–467
    [Google Scholar]
  97. Lin D., Wu, L-C., Rinaldi M. G., Lehmann P. F. Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol 1995; 33:1815–1821
    [Google Scholar]
  98. Yarrow D., Meyer S. A. Proposal for amendment of the diagnosis of the genus Candida Berkhout nom. cons. Int J Syst Bacteriol 1978; 28:611–615
    [Google Scholar]
  99. McGinnis M. R., Ajello L., Beneke E. S. Taxonomic and nomenclatural evaluation of the genera Candida and Torulopsis. J Clin Microbiol 1984; 20:813–814
    [Google Scholar]
  100. Odds F. C. Candida albicans, the life and times of a pathogenic yeast. J Med Vet Mycol 1994; 32: Suppl 11–8
    [Google Scholar]
  101. Kurtzman C. P., Phaff H. J. Molecular taxonomy. In Rose A. H., Harrison J. S. (eds) The yeasts vol 1 Biology of yeasts, 2nd edn London: Academic Press; 198763–94
    [Google Scholar]
  102. Woese C. R. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  103. Sogin M. L., Miotto K., Miller L. Primary structure of the Neurospora crassa small subunit ribosomal RNA coding region. Nucleic Acids Res 1986; 14:9540
    [Google Scholar]
  104. Edman J. C., Kovacs J. A., Masur H., Santi D. V., Elwood H. J., Sogin M. L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 1988; 334:519–522
    [Google Scholar]
  105. Wong O. C., Clark-Walker G. D. Sequence of the gene for the cytoplasmic ribosomal RNA small subunit from Candida (Torulopsis) glabrata. Nucleic Acids Res 1990; 18:1888
    [Google Scholar]
  106. Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 1991; 173:2250–2255
    [Google Scholar]
  107. Hendriks L., Goris A., Van de Peer Y. Phylogenetic analysis of five medically important Candida species as deduced on the basis of small ribosomal subunit RNA sequences. J Gen Microbiol 1991; 137:1223–1230
    [Google Scholar]
  108. Fell J. W., Statzell-Tallman A., Lutz M. J., Kurtzman C. P. Partial rRNA sequences in marine yeasts; a model for identification of marine eukaryotes. Mol Mar Biol Biotechnol 1992; 1:175–186
    [Google Scholar]
  109. Fell J. W. Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol Mar Biol Biotechnol 1993; 2:174–180
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-6-399
Loading
/content/journal/jmm/10.1099/00222615-44-6-399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error