1887

Abstract

Many isolates of from cystic fibrosis (CF) patients are auxotrophic and require amino acids for growth. A quantitative assay was used to determine the total content of free amino acids of sputum sol-phase extracts from CF and non-CF patients to assess the presence of amino acids in the airway. CF patients colonised with auxotrophic had a higher sputum amino-acid content (mean 6.77 mg/ml) than those colonised with prototrophs (mean 3.77 mg/ml); overall, CF specimens (mean 5.70 mg/ml) had a higher amino-acid content than non-CF samples (2.52 mg/ml). The amino-acid profile of sputum extracts was assessed by one-dimensional thin layer chromatography (TLC). Several amino acids were identified in the extracts, in particular, leucine, isoleucine, phenylalanine, tyrosine, alanine, serine and methionine or valine or both. All sputum specimens except two (which contained < 1.5 mg of amino acids/ml), promoted the growth, of 34 auxotrophic strains of from CF patients in a minimal medium. These results indicate, therefore, that amino acids are plentiful in the sputum of CF patients and are able to supply the requirements of auxotrophic strains. It is suggested that the increased amino-acid content in the airways of CF patients plays a significant role in the selection and maintenance of nutritionally deficient .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-2-110
1996-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/2/medmicro-45-2-110.html?itemId=/content/journal/jmm/10.1099/00222615-45-2-110&mimeType=html&fmt=ahah

References

  1. Govan J. R. W., Glass S. The microbiology and therapy of cystic fibrosis lung infections. Rev Med Microbiol 1990; 1:19–28
    [Google Scholar]
  2. Govan J. R. W. Mucoid strains of Pseudomonas aeruginosa: the influence of culture medium on the stability of mucus production. J Med Microbiol 1975; 8:513–522
    [Google Scholar]
  3. Hancock R. E. W., Mutharia L. M., Chan L., Darveau R. P., Speert D. P., Pier G. B. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983; 42:170–177
    [Google Scholar]
  4. Irvin R. T., Govan J. R. W., Fyfe J. A. M., Costerton J. W. Heterogeneity of antibiotic resistance in mucoid isolates of Pseudomonasaeruginosa obtained from cystic fibrosis patients: role of outer membrane proteins. Antimicrob Agents Chemother 1981; 19:1056–1063
    [Google Scholar]
  5. Taylor R. F. H., Hodson M. E., Pitt T. L. Auxotrophy of Pseudomonas aeruginosa in cystic fibrosis. FEMS Microbiol Lett 1992; 92:243–246
    [Google Scholar]
  6. Barth A. L., Pitt T. L. Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory tract infections in patients with cystic fibrosis. J Clin Microbiol 1995; 33:37–40
    [Google Scholar]
  7. Potter J. L., Matthews L. W., Lemm J., Spector S. Human pulmonary secretions in health and disease. Ann NY Acad Sci 1963; 106:692–697
    [Google Scholar]
  8. Lopez-Vidriero M. T., Reid L. Bronchial mucus in health and disease. Br Med Bull 1978; 34:63–74
    [Google Scholar]
  9. Kilboum J. P. Bacterial content and ionic composition of sputum in cystic fibrosis. Lancet 1978; 1:334
    [Google Scholar]
  10. Kilboum J. P. Biochemical abnormalities in sputum from cystic fibrosis patients possibly enhancing lung infection. Clin Chem 1984; 30:946–947
    [Google Scholar]
  11. Ohman D. E., Chakrabarty A. M. Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun 1982; 37:662–669
    [Google Scholar]
  12. Clowes R. C., Hayes W. (eds) Experiments in microbial genetics Oxford: Blackwell Scientific Publications; 1968184–185
    [Google Scholar]
  13. King E. O., Ward M. K., Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 1954; 44:301–307
    [Google Scholar]
  14. Voet D., Voet J. G. Biochemistry. New York: John Wiley and Sons; 199059–74
    [Google Scholar]
  15. Spies J.R. Colorimetric procedures for amino acids. Methods Enzymol 1957; 3:467–477
    [Google Scholar]
  16. Moore S. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 1968; 243:6281–6283
    [Google Scholar]
  17. Speert D. P., Farmer S. W., Campbell M. E., Musser J. M., Selander R.K., Kuo S. Conversion of Pseudomonas aeruginosa to the phenotype characteristic of strains from patients with cystic fibrosis. J Clin Microbiol 1990; 28:188–194
    [Google Scholar]
  18. Gilligan P. H., Gage P. A., Welch D. F., Muszynski M. J., Wait K. R. Prevalence of thymidine-dependent Staphylococcus aureus in patients with cystic fibrosis. J Clin Microbiol 1987; 25:1258–1261
    [Google Scholar]
  19. Barth A. L., Pitt T. L. Auxotrophy in Burkholderia (Pseudomonas) cepacia from cystic fibrosis patients. J Clin Microbiol 1995; 33:2192–2194
    [Google Scholar]
  20. Harder W., Kuenen J. G., Matin A. A review. Microbial selection in continuous culture. J Appl Bacteriol 1977; 43:1–24
    [Google Scholar]
  21. Old I. G., Phillips S. E. V., Stockley P. G., Saint-Girons I. Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog Biophys Mol Biol 1991; 56:145–185
    [Google Scholar]
  22. Mahenthiralingam E., Campbell M. E., Speert D. P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994; 62:596–605
    [Google Scholar]
  23. Hall B. G. Selection, adaptation, and bacterial operons. Genome 1989; 31:265–271
    [Google Scholar]
  24. Borderon E., Horodniceanu T. Metabolically deficient dwarf-colony mutants of Escherichia coli: deficiency and resistance to antibiotics of strains isolated from urine culture. J Clin Microbiol 1978; 8:629–634
    [Google Scholar]
  25. Wilcken D. E. L., Grupta V. J., Reddy S. G. Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. Clin Sci 1980; 58:427–430
    [Google Scholar]
  26. McIver C. J., Tapsall J. W. Further studies of clinical isolates of cysteine-requiring Escherichia coli and Klebsiella and possible mechanisms for their selection in vivo. J Med Microbiol 1993; 39:382–387
    [Google Scholar]
  27. Cicmanec J. F., Holder I. A. Growth of Pseudomonas aeruginosa in normal and burned skin extract: role of extracellular proteases. Infect Immun 1979; 25:477–483
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-2-110
Loading
/content/journal/jmm/10.1099/00222615-45-2-110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error