1887

Abstract

The antiviral activity of podophyllotoxin against herpes simplex type 1 virus (HSV-1) grown in Vero cells was studied by a simple microtitration assay. Antiviral effects were induced at similar concentrations as direct cellular toxicity, as characterised by a time-dependent loss of cell monolayer. Podophyllotoxin-mediated toxicity arises from cytoplasmic microtubular, and hence cytoskeletal, decay. Some degree of selectivity was seen for inhibition of virus replication over direct cellular toxicity. Podophyllotoxin acted against an early viral process, as an antiviral effect was still seen if drug was removed 2 h after infection. Similar effects were seen with colchicine, a classical tubulin-binding compound, but not with bromovinyldeoxyuridine. Podophyllotoxin was capable of inducing a cytoprotective effect in Vero cells, as pre-treatment of cells abrogated virus growth for up to 90 min after removal of drug. This is coincident with the repolymerisation of cellular microtubules and re-formation of the cytoskeleton. We conclude that HSV-1 relies upon a functional cellular cytoskeleton for efficient completion of an early replicative event. Such a process may be the transport of viral material to the nucleus or inhibition of the formation of intranuclear viral ‘replication factories’, bodies containing cytoskeletal fragments constructed after viral infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-3-167
1996-09-01
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/3/medmicro-45-3-167.html?itemId=/content/journal/jmm/10.1099/00222615-45-3-167&mimeType=html&fmt=ahah

References

  1. Sullivan K. F. Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 1988; 4:687–716
    [Google Scholar]
  2. Dustin P. (ed) Microtubules. 2nd rev. edn Berlin: Springer-Verlag; 1984
    [Google Scholar]
  3. Carlier M. F. Role of nucleotide hydrolysis in the dynamics of actin-filaments and microtubules. Int Rev Cytol 1989; 115:139–170
    [Google Scholar]
  4. Avila J. Microtubule dynamics. FASEB J 1990; 4:3284–3290
    [Google Scholar]
  5. Erickson H. P., O’Brien E. T. Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct 1992; 21:145–166
    [Google Scholar]
  6. Avila J. Microtubule functions. Life Sci 1992; 50:327–334
    [Google Scholar]
  7. Schulze E., Kirschner M. Dynamic and stable populations of microtubules in cells. J Cell Biol 1987; 104:277–288
    [Google Scholar]
  8. Cassimeris L. U., Walker R. A., Pryer N. K., Salmon E. D. Dynamic instability of microtubules. Bioessays 1987; 7:149–154
    [Google Scholar]
  9. Bibor-hardy Y., Bernard M., Simard R. Nuclear matrix modifications at different stages of infection by herpes-simplex virus type 1. J Gen Virol 1985; 66:1095–1103
    [Google Scholar]
  10. Bibor-hardy V., Pouchelet M., St-Pierre E., Herzberg M., Simard R. The nuclear matrix is involved in herpes-simplex virogenesis. Virology 1982; 121:296–306
    [Google Scholar]
  11. Quinlan M. P., Knipe D. M. Nuclear-localization of herpesvirus proteins - potential role for the cellular framework. Mol Cell Biol 1983; 3:315–324
    [Google Scholar]
  12. Ciampor F. The role of cytoskeleton and nuclear matrix in virus replication. Acta Virol 1988; 32:168–189
    [Google Scholar]
  13. Knipe D. M. Virus-host-cell interactions. In Fields B. N., Knipe D. M. (eds) Fundamental virology 2nd edn New York: Raven; 1991267–290
    [Google Scholar]
  14. Luduena R. F., Anderson W. H., Prasad V. Interactions of vinblastine and maytansine with tubulin. Ann NY Acad Sci 1986; 466:718–732
    [Google Scholar]
  15. Schilstra M. J., Martin S. R., Bayley P. M. The effect of podophyllotoxin on microtubule dynamics. J Biol Chem 1989; 264:8827–8834
    [Google Scholar]
  16. Markkanen T., Makinen M. L., Maunuksela E., Himanen P. Podophyllotoxin lignans under experimental antiviral research. Drug Exp Clin Res 1981; 7:711–718
    [Google Scholar]
  17. Bedows E., Hatfield G. M. An investigation of the antiviral activity of Podophyllum peltatum. J Nat Prod 1982; 45:725–729
    [Google Scholar]
  18. Macrae W. D., Towers G. H. N. Biological activities of lignans. Phytochem 1984; 23:1207–1220
    [Google Scholar]
  19. Macrae W. D., Hudson J. B., Towers G. H. N. The antiviral action of lignans. Planta Med 1989; 55:531–535
    [Google Scholar]
  20. Farnsworth N. R., Svoboda G. H., Blomster R. N. Antiviral activity of selected Catharanthus alkaloids. J Pharm Sci 1968; 57:2174–2175
    [Google Scholar]
  21. Spendlove R. S., Lenette E. H., Chin J. N., Knight C. O. Effect of antimitotic agents on intracellular reovirus antigen. Cancer Res 1964; 24:1826–1833
    [Google Scholar]
  22. Richardson C. D., Vance D. E. The effect of colchicine and dubucaine on the morphogenesis of Semliki Forest Virus. J Biol Chem 1978; 253:4584–1589
    [Google Scholar]
  23. Satake M., Luftig R. B. Association of murine leukemia viral proteins with the cytoskeleton. J Cell Biol 1981; 91:326a
    [Google Scholar]
  24. Seif R. Factors which disorganize microtubules or microfilaments increase the frequency of cell transformation by polyoma virus. J Virol 1980; 36:421–428
    [Google Scholar]
  25. Knipe D. M., Senechek D., Rice S. A., Smith J. L. Stages in the nuclear-association of the herpes-simplex virus transcriptional activator protein ICP4. J Virol 1987; 61:276–284
    [Google Scholar]
  26. Jackson D. E., Dewick P. M. Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum. Phytochem 1984; 23:1147–1152
    [Google Scholar]
  27. Freshney R. J. (ed) Culture of animal cells New York: Willey-Liss; 1989253–255
    [Google Scholar]
  28. Takeuchi H., Baba M., Shigeta S. An application of tetra-zolium (MTT) colorimetric assay for the screening of anti-herpes simplex virus compounds. J Virol Methods 1991; 33:61–71
    [Google Scholar]
  29. De Clercq E., Desgranges C., Herdewijn P. Synthesis and antiviral activity of (E)-5-(2-Bromovinyl)uracil and (E)-5-(2-Bromovinyl)uridine. J Med Chem 1986; 29:213–217
    [Google Scholar]
  30. Kelleher J. K. Tubulin binding affinities of podophyllotoxin and colchicine analogues. Mol Pharmacol 1977; 13:232–241
    [Google Scholar]
  31. Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 1974; 89:737–755
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-3-167
Loading
/content/journal/jmm/10.1099/00222615-45-3-167
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error