1887

Abstract

The existence of epitopes common to different strains in the transferrin (Tf)-binding protein 2 (TBP2), combined with the ability of polyclonal anti-TBP2 antibodies to inhibit Tf binding and block iron uptake in this species, led to this study on the effect of anti-TBP1+2 monoclonal antibodies (MAbs) to determine the presence of epitopes inside the Tf-binding region. All MAbs used reacted exclusively with the homologous strain when tested by dot-blots of outer membrane vesicles, with the reaction being specific for TBP2 after SDS-PAGE and electroblotting. In contrast, ELISA and iron-uptake blocking assays were also positive with heterologous strains belonging to Rokbi’s group II (high mol.wt TBP2). The results confirmed the two group classification proposed by Rokbi and, in contrast to other studies, indicated the existence of epitopes in the Tf-binding region that are common only to strains of Rokbi’s group II. These epitopes may become denatured after drying for dot-blot assays or after SDS-PAGE and electroblotting.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-4-252
1996-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/4/medmicro-45-4-252.html?itemId=/content/journal/jmm/10.1099/00222615-45-4-252&mimeType=html&fmt=ahah

References

  1. Mickelsen P. A., Sparling P. F. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun 1981; 33:555–564
    [Google Scholar]
  2. Danve B., Lissolo L., Mignon M. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 1993; 11:1214–1220
    [Google Scholar]
  3. Griffiths E., Stevenson P., Ray A. Antigenic and molecular heterogenicity of the transferrin-binding protein of Neisseria meningitidis. FEMS Microbiol Lett 1990; 69:31–36
    [Google Scholar]
  4. Ferrón L., Ferreirós C. M., Criado M. T., Pintor M. Immunogenicity and antigenic heterogeneity of a human transferrin-binding protein in Neisseria meningitidis. Infect Immun 1992; 60:2887–2892
    [Google Scholar]
  5. Ferreirós C. M., Ferrón L., Criado M. T. In vivo human immune response to transferrin-binding protein 2 and other iron-regulated proteins of Neisseria meningitidis. FEMS Immunol Med Microbiol 1994; 8:63–68
    [Google Scholar]
  6. Rokbi B., Mazarin V., Maitre-Wilmotte G., Quentin-Millet M.-J. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol Lett 1993; 110:51–58
    [Google Scholar]
  7. Quentin-Millet M. J., Lissolo L., Legrain M. Transferrinbinding proteins of Neisseria meningitidis. In Evans J. S., Yost S. E., Maiden M. C. J., Feavers I. M. (eds) The 9th International Pathogenic Neisseria Conference, Winchester 1994137–139
    [Google Scholar]
  8. Stevenson P., Williams P., Griffiths E. Common antigenic domains in transferrin-binding protein 2 of Neisseria menin gitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b. Infect Immun 1992; 60:2391–2396
    [Google Scholar]
  9. Holland J., Langford P. R., Towner K. J., Williams P. Evidence for in vivo expression of transferrin-binding proteins in Haemophilus influenzae type b. Infect Immun 1992; 60:2986–2991
    [Google Scholar]
  10. Lissolo L., Maitre-Wilmotte G., Dumas P., Mignon M., Danve B., Quentin-Millet M.-J. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun 1995; 63:884–890
    [Google Scholar]
  11. Pintor M., Ferrón L., Gómez J. A. Blocking of iron uptake from transferrin by antibodies against the transferrin binding proteins in Neisseria meningitidis. Microb Pathog (in press)
    [Google Scholar]
  12. Pintor M., Ferreirós C. M., Criado M. T. Energy-independent binding of iron complexed to small organic chelants by Neisseria meningitidis. J Gen Appl Microbiol 1994; 40:23–34
    [Google Scholar]
  13. Ferreirós C. M., Criado M. T., Del Rio M. T., Pintor M. Analysis of the expression of outer-membrane proteins in Neisseria meningitidis in iron-replete and iron-deficient media. FEMS Microbiol Lett 1990; 71:49–54
    [Google Scholar]
  14. Ala’Aldeen D. A. A., Powell N. B. L., Wall R. A., Borriello S. P. Localization of the meningococcal receptors for human transferrin. Infect Immun 1993; 61:751–759
    [Google Scholar]
  15. Smith A. W., Wilton J., Clark S. A., Alpar O., Melling J., Brown M. R. W. Production and characterization of monoclonal antibodies to outer membrane proteins of Pseudomonas aerugi nosa grown in iron-depleted media. J Gen Microbiol 1991; 137:227–236
    [Google Scholar]
  16. Gorringe A. R., Irons L. I., Aisen P., Zak O., Robinson A. Purification of Neisseria meningitidis transferrin binding proteins and characterization by epitope mapping and iron release studies. In Evans J. S., Yost S. E., Maiden M. C. J., Feavers I. M. (eds) The 9th International Pathogenic Neisseria Conference, Winchester 1994140–142
    [Google Scholar]
  17. Pintor M., Ferreirós C. M., Criado M. T. Characterization of the transferrin-iron uptake system in Neisseria meningitidis. FEMS Microbiol Lett 1993; 112:159–166
    [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  19. Wood J. N., Solid-phase screening of monoclonal antibodies. In: Walker J. M. (ed) Methods in molecular biology vol 1 Clifton N. J: Human Press; 1984279–286
    [Google Scholar]
  20. Pintor M., Ferreirós C. M., Criado M. T., Ferron L. Expression levels of human transferrin receptors in Neisseria species. J Microbiol Methods 1992; 15:321–326
    [Google Scholar]
  21. Veale D. R., Penn C. W., Smith H. Factors affecting the induction of phenotypically determined serum resistance of Neisseria gonorrhoeae grown in media containing serum or its diffusible components. J Gen Microbiol 1981; 122:235–245
    [Google Scholar]
  22. Sokal R. R., Rohlf F. J. Single-classification analysis of variance. In Sokal R. R., Rohlf F. J. (eds) Biometry New York: W.H. Freeman and Co; 1995207–271
    [Google Scholar]
  23. Zollinger W., Boslego J., Moran E. Meningococcal serogroup B vaccine: protection trial and follow-up studies in Chile. NIPHS Annals 1991; 14:211–213
    [Google Scholar]
  24. Fernandez de Cossio M. E., Ohlin M., Llano M. Human monoclonal antibodies against an epitope on the class 5c outer membrane protein common to many pathogenic strains of Neisseria meningitidis. J Infect Dis 1992; 166:1322–1328
    [Google Scholar]
  25. Christodoulides M., McGuinness B. T., Heckels J.E. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide. J Gen Microbiol 1993; 139:1729–1738
    [Google Scholar]
  26. Christodoulides M., Heckels J. E. Immunization with a multiple antigen peptide containing defined B- and T-cell epitopes: production of bactericidal antibodies against group B Neisseria meningitidis. Microbiology 1994; 140:2951–2960
    [Google Scholar]
  27. Delvig A. A., Wedege E., Caugant D. A. A linear B-cell epitope on the class 3 outer-membrane protein of Neisseria meningitidis recognized after vaccination with the Norwegian group B outer-membrane vesicle vaccine. Microbiology 1995; 141:1593–1600
    [Google Scholar]
  28. Ala’Aldeen D. A. A., Stevenson P., Griffiths E. Immune responses in humans and animals to meningococcal transferrinbinding proteins: implications for vaccine design. Infect Immun 1994; 62:2984–2990
    [Google Scholar]
  29. Irwin S. W., Averil N., Cheng C. Y., Schryvers A. B. Preparation and analysis of isogenic mutants in the transferrin receptor proteins genes, tbpA and tbpB, from Neisseria meningitidis. Mol Microbiol 1993; 8:1125–1133
    [Google Scholar]
  30. Legrain M., Mazarin V., Irwin S. W. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbpl and Tbp2. Gene 1993; 130:73–80
    [Google Scholar]
  31. Anderson J. E., Sparling P. F., Comelissen C. N. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 1994; 176:3162–3170
    [Google Scholar]
  32. Pettersson A., Maas A., Tommassen J. Identification of iroA gene product of Neisseria meningitidis as a lactoferrin receptor. J Bacteriol 1994; 176:1764–1766
    [Google Scholar]
  33. Ferreirós C. M., Criado M. T., Ferron L., Pintor M. Blocking of iron uptake from transferrin by antibodies against the transferrinbinding system of Neisseria meningitidis. The 9th International Pathogenic Neisseria Conference, Winchester 1994166–167
    [Google Scholar]
  34. Vonder Haar R. A., Legrain M., Kolbe H. V. J., Jacobs E. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J Bacteriol 1994; 176:6207–6213
    [Google Scholar]
  35. Pettersson A., Kuipers B., Pelzer M. Monoclonal antibodies against the 70-kilodalton iron-regulated protein of Neisseria meningitidis are bactericidal and strain specific. Infect Immun 1990; 58:3036–3041
    [Google Scholar]
  36. Ala’Aldeen D. A. A., Davies H. A., Borriello S. P. Vaccine potential of meningococcal FrpB: studies on surface exposure and functional attributes of common epitopes. Vaccine 1994; 12:535–541
    [Google Scholar]
  37. Comelissen C. N., Sparling P. F. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 1994; 14:843–850
    [Google Scholar]
  38. Ferreiras C. M., Criado M. T., Pintor M., Ferron L. Analysis of the molecular weight heterogeneity of the transferrin receptor in Neisseria meningitidis and commensal Neisseria. FEMS Microbiol Lett 1991; 83:247–254
    [Google Scholar]
  39. Ferron L., Ferreiras C. M., Criado M. T., Pintor M. Reliability of laboratory models in the analysis of Tbp2 and other meningococcal antigens. FEMS Immunol Med Microbiol 1994; 9:299–305
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-4-252
Loading
/content/journal/jmm/10.1099/00222615-45-4-252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error