1887

Abstract

Adherence of to HEp-2 and Caco-2 cell monolayers was investigated with 24 clinical isolates. Growth phase, temperature, multiplicity of infection and length of incubation affected adherence. Treatment of the bacteria with trypsin, sodium metaperiodate, mechanical shearing and the addition of cytochalasin B and cycloheximide to the monolayer significantly reduced the adherence capabilities of the strains investigated. The use of chloramphenicol to inhibit protein synthesis reduced the adhesive capabilities of bacteria grown in liquid medium and those subjected to mechanical shearing. Light microscopy, scanning and transmission electron microscopy were employed in the investigation of bacteria-bacteria and bacteria-monolayer interactions and indicated similarities with the aggregative adherence patterns of the Enterobacteriaceae. The presence of extracellular bacterial appendages and their correlation with increased adhesive capacity may indicate a role in the process of adherence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-6-445
1996-12-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/6/medmicro-45-6-445.html?itemId=/content/journal/jmm/10.1099/00222615-45-6-445&mimeType=html&fmt=ahah

References

  1. Challapalli M., Tess B. R., Cunningham D. G., Chopra A. K., Houston C. W. Aeromonas-associated diarrhea in children. Pediatr Infect Dis J 1988; 7:693–698
    [Google Scholar]
  2. Dryden M., Munro R. Aeromonas septicemia: relationship of species and clinical features. Pathology 1989; 21:111–114
    [Google Scholar]
  3. Kelly K. A., Koehler J. M., Ashdown L. R. Spectrum of extra-intestinal disease due to Aeromonas species in tropical Queensland, Australia. Clin Infect Dis 1993; 16:574–579
    [Google Scholar]
  4. Kirov S. M. The public health significance of Aeromonas spp. in foods. Int J Food Microbiol 1993; 20:179–198
    [Google Scholar]
  5. Parras F., Diaz M. D., Reina J., Moreno S., Guerrero C., Bouza E. Meningitis due to Aeromonas species: case report and review. Clin Infect Dis 1993; 17:1058–1060
    [Google Scholar]
  6. Morita K., Watanabe N., Kurata S., Kanamori M. β-lactam resistance of motile Aeromonas isolates from clinical and environmental sources. Antimicrob Agents Chemother 1994; 38:353–355
    [Google Scholar]
  7. Motyl M. R., McKinley G., Janda J. M. In vitro susceptibilities of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae to 22 antimicrobial agents. Antimicrob Agents Chemother 1985; 28:151–153
    [Google Scholar]
  8. Namdari H., Bottone E. J. Microbiologic and clinical evidence supporting the role of Aeromonas caviae as a pediatric enteric pathogen. J Clin Microbiol 1990; 28:837–840
    [Google Scholar]
  9. Singh D. V., Sanyal S. C. Enterotoxicity of clinical and environmental isolates of Aeromonas spp. J Med Microbiol 1992; 36:269–272
    [Google Scholar]
  10. Wilcox M. H., Cook A. M., Eley A., Spencer R. C. Aeromonas spp. as a potential cause of diarrhoea in children. J Clin Pathol 1992; 45:959–963
    [Google Scholar]
  11. Barer M. R., Millership S. E., Tabaqchali S. Relationship of toxin production to species in the genus Aeromonas . J Med Microbiol 1986; 22:303–309
    [Google Scholar]
  12. Janda J. M., Oshiro L. S., Abbott S. L., Duffey P. S. Virulence markers of mesophilic aeromonads: association of the auto-agglutination phenomenon with mouse pathogenicity and the presence of a peripheral cell-associated layer. Infect Immun 1987; 55:3070–3077
    [Google Scholar]
  13. Kirov S. M., Rees B., Wellock R. C., Goldsmid J. M., Van Galen A. D. Virulence characteristics of Aeromonas spp. in relation to source and biotype. J Clin Microbiol 1986; 24:827–834
    [Google Scholar]
  14. Gunzburg S. T., Chang B. J., Elliot S. J., Burke V., Gracey M. Diffuse and enteroaggregative patterns of adherence of enteric Escherichia coli isolated from aboriginal children from the Kimberley region of Western Australia. J Infect Dis 1993; 167:755–758
    [Google Scholar]
  15. Knutton S., Lloyd D. R., McNeish A. S. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 1987; 55:69–77
    [Google Scholar]
  16. Atkinson H. M., Trust T. J. Hemagglutination properties and adherence ability of Aeromonas hydrophila . Infect Immun 1980; 27:938–946
    [Google Scholar]
  17. Bartkova G., Ciznar A. Adherence patterns of non-piliated Aeromonas hydrophila strains to tissue cultures. Microbios 1994; 77:47–55
    [Google Scholar]
  18. Grey P. A., Kirov S. M. Adherence to HEp-2 cells and enteropathogenic potential of Aeromonas spp. Epidemiol Infect 1993; 110:279–287
    [Google Scholar]
  19. Kirov S. M. Adhesion and piliation of Aeromonas spp. Med Microbiol Lett 1993; 2:274–280
    [Google Scholar]
  20. Favre-Bonte S., Darfeuille-Michaud A., Forestier C. Aggregative adherence of Klebsiella pneumoniae to human intestine-407 cells. Infect Immun 1995; 63:1318–1328
    [Google Scholar]
  21. Neves M. S., Nunes M. P., Milhomem A. M. Aeromonas species exhibit aggregative adherence to HEp-2 cells. J Clin Microbiol 1994; 32:1130–1131
    [Google Scholar]
  22. Yamamoto T., Endo S., Yokota T., Echeverria P. Characteristics of adherence of enteroaggregative Escherichia coli to human and animal mucosa. Infect Immun 1991; 59:3722–3739
    [Google Scholar]
  23. Nishikawa Y., Kimura T., Kishi T. Mannose-resistant adhesion of motile Aeromonas to INT407 cells and the differences among isolates from humans, food and water. Epidemiol Infect 1991; 107:171–179
    [Google Scholar]
  24. Wilcox M. H., Cook A. M., Thickett K. J., Eley A., Spencer R. C. Phenotypic methods for speciating clinical Aeromonas isolates. J Clin Pathol 1992; 45:1079–1083
    [Google Scholar]
  25. Thornley J. P., Shaw J. G., Gryllos I. A., Eley A. Cell line adhesion and haemagglutination of Aeromonas caviae clinical isolates. Med Microbiol Lett 1995; 4:316–323
    [Google Scholar]
  26. Carrello A., Silburn K. A., Budden J. R., Chang B. J. Adhesion of clinical and environmental Aeromonas isolates to HEp-2 cells. J Med Microbiol 1988; 26:19–27
    [Google Scholar]
  27. Gosling P. J. Biochemical characteristics, enterotoxigenicity and susceptibility to antimicrobiol agents of clinical isolates of Aeromonas species encountered in the western regions of Saudi Arabia. J Med Microbiol 1986; 22:51–55
    [Google Scholar]
  28. Nataro J. P., Deng Y., Maneval D. R., German A. L., Martin W. C., Levine M. M. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 1992; 60:2297–2304
    [Google Scholar]
  29. Naess V., Johannessen A. C., Hofstad T. Adherence of Campylobacter jejuni and Campylobacter coli to porcine intestinal brush border membranes. APMIS 1988; 96:681–687
    [Google Scholar]
  30. Goldberg M. B., Sansonetti P. J. Shigella subversion of the cellular cytoskeleton: a strategy for epithelial colonization. Infect Immun 1993; 61:4941–4946
    [Google Scholar]
  31. Yamamoto T., Kaneko M., Changchawalit S., Serichantalergs O., Ijuin S., Echeverria P. Actin accumulation associated with clustered and localized adherence in Escherichia coli isolated from patients with diarrhea. Infect Immun 1994; 62:2917–2929
    [Google Scholar]
  32. Ho A. S. Y., Mietzner T. A., Smith A. J., Schoolnik G. K. The pili of Aeromonas hydrophila: identification of an environmentally regulated ‘mini-pilin’. J Exp Med 1990; 172:795–806
    [Google Scholar]
  33. Hokama A., Honma Y., Nakesone N. Pili of an Aeromonas hydrophila strain as a possible colonization factor. Microbiol Immunol 1990; 34:901–915
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-6-445
Loading
/content/journal/jmm/10.1099/00222615-45-6-445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error