1887

Abstract

Previously the heat-stable enterotoxin in and has been detected by suckling mouse assay, a non-specific approach, and by DNA probes, a time-consuming method. This report describes a polymerase chain reaction (PCR) procedure for the detection of the (NAG-ST) and (O1-ST) gene sequences that is rapid and specific, allowing toxin gene molecular characterisation. A total of 34 and isolates was examined for ST and CT genes. The NAG-ST gene sequence was amplified in 13 of 22 non-O1/non-O139 and three of five strains. A new enterotoxin gene sequence pattern was found with I and I restriction endonuclease PCR fragment digestion of two isolates, in addition to the pattern anticipated from the Genbank sequence, and found with the other ST, These results show that ST-PCR detection is useful for the characterisation of and .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-5-398
1997-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/5/medmicro-46-5-398.html?itemId=/content/journal/jmm/10.1099/00222615-46-5-398&mimeType=html&fmt=ahah

References

  1. Kaper J. B., Fasano A., Trucksis M. Toxins of Vibrio cholerae. In Waschsmuth I. K., Blake P. A., Olsvik O. (eds) Vibrio cholerae and cholera: molecular to global perspectives Washington, DC: ASM Press; 1994145–176
    [Google Scholar]
  2. Morris J. G. Non-Ol group 1 Vibrio cholerae strains not associated with epidemic diseases. In Waschsmuth I. K., Blake P. A., Olsvik O. (eds) Vibrio cholerae and cholera: molecular to global perspectives Washington, DC: ASM Press; 1994103–115
    [Google Scholar]
  3. Takeda T., Peina Y., Ogawa A. Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae 01. FEMS Microbiol Lett 1991; 80:23–27
    [Google Scholar]
  4. Yuan P., Ogawa A., Ramamurthy T. Vibrio mimicus are the reservoirs of the heat-stable enterotoxin gene (nag-st) among species of the genus Vibrio. World J Microbiol Biotech 1994; 10:59–63
    [Google Scholar]
  5. Mallard K. E., Desmarchelier P. M. Detection of heat-stable enterotoxin genes among Australian Vibrio cholerae 01 strains. FEMS Microbiol Lett 1995; 127:111–115
    [Google Scholar]
  6. Hoge C. W., Sethabutr O., Bodhidatta L., Echeverria P., Robertson D. C., Morris J. G. Use of a synthetic oligonucleotide probe to detect strains of non-serovar 01 Vibrio cholerae carrying the gene for heat-stable enterotoxin (NAG-ST). J Clin Microbiol 1990; 28:1473–1476
    [Google Scholar]
  7. Fields P. I., Popovic T., Wachsmuth K., Olsvik O. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae 01 strains from the Latin America cholera epidemic. J Clin Microbiol 1992; 30:2118–2121
    [Google Scholar]
  8. Salles C. A., Momen H., Vicente A. C. P., Coelho A. Vibrio cholerae in South America: polymerase chain reaction and zymovar analysis. Trans R Soc Trop Med Hyg 1993; 87:272
    [Google Scholar]
  9. Shangkuan Y. H., Show Y. S., Wang T. M. Multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae and to biotype Vibrio cholerae 01. J Appl Bacteriol 1995; 79:264–273
    [Google Scholar]
  10. Varela P., Pollevick G. D., Rivas M. Direct detection of Vibrio cholerae in stool samples. J Clin Microbiol 1994; 32:1246–1248
    [Google Scholar]
  11. Ogawa A., Kato J.-I., Watanabe H., Nair B. G., Takeda T. Cloning and nucleotide sequence of a heat-stable enterotoxin gene from Vibrio cholerae non-Ol isolated from a patient with traveller’s diarrhea. Infect Immun 1990; 58:3325–329
    [Google Scholar]
  12. Ogawa A., Takeda T. The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol Immunol 1993; 37:607–616
    [Google Scholar]
  13. Salles C. A., Momen H. Identification of Vibrio cholerae by enzyme electrophoresis. Trans R Soc Trop Med Hyg 1991; 85:544–547
    [Google Scholar]
  14. Moseley S. L., Hardy J. W., Huq M. I., Echeverria P., Falkow S. Isolation and nucelotide sequence determination of a gene encoding a heat-stable enterotoxin of Escherichia coli. Infect Immun 1983; 39:1167–1174
    [Google Scholar]
  15. Aldova E., Laznickova K., Stepankova E., Lietava J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis 1968; 118:25–31
    [Google Scholar]
  16. Morris J. G., Takeda T., Tall B. D. Experimental non-0 group 1 Vibrio cholerae gastroenteritis in humans. J Clin Invest 1990; 85:697–705
    [Google Scholar]
  17. Nair G. B., Takeda Y. Detection of toxins of Vibrio cholerae 01 and non-Ol. In Waschsmuth I. K., Blake P. A., Olsvik O. (eds) Vibrio cholerae and cholera: molecular to global perspectives Washington, DC: ASM Press; 199453–67
    [Google Scholar]
  18. Dalsgaard A., Serichantalergs O., Shimada T., Sethabutr O., Echeverria P. Prevalence of Vibrio cholerae with heat-stable enterotoxin (NAG-ST) and cholera toxin genes; restriction fragment length polymorphisms of NAG-ST genes among V. cholerae O serogroups from a major shrimp production area in Thailand. J Med Microbiol 1995; 43:216–220
    [Google Scholar]
  19. Arita M., Honda T., Miwatani T., Ohmori K., Takao T., Shimonishi Y. Purification and characterization of a new heat-stable enterotoxin produced by Vibrio cholerae non-Ol serogroup Hakata. Infect Immun 1991; 59:2186–2188
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-5-398
Loading
/content/journal/jmm/10.1099/00222615-46-5-398
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error