1887

Abstract

Summary

Thirty clinical isolates of from cystic fibrosis (CF) patients in the UK and Denmark were characterised, together with other clinical isolates and laboratory strains of and . Outer-membrane protein (OMP) profiles were determined, and the organisms were typed genotypically by pulsed-field gel electrophoresis after DNA restriction analyses with I and I. This latter method revealed four clusters among the clinical isolates studied; one of these contained isolates of the UK and intercontinental CF epidemic lineage ET12, a cluster which appeared to contain three subtypes. Each of the four clusters appeared less closely related to laboratory strains of than were laboratory strains of , but more closely related to both these species than to . Two types of OMP profile were distinguished among the clinical isolates and strains, and were designated A and B. In type A isolates the major proteins had mol. wts of 39, 27 and 18 kDa. Type B strains additionally contained a group of proteins in the size range 80–90 kDa, although detection of these depended upon the conditions for sample denaturation. In most cases, the OMP type correlated with the genotype, suggesting that examination of OMPs might be of value in the initial characterisation of isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-11-999
1998-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/11/medmicro-47-11-999.html?itemId=/content/journal/jmm/10.1099/00222615-47-11-999&mimeType=html&fmt=ahah

References

  1. LiPuma J. J., Marks-Austin K. A., Holsclaw D. S., Winnie G. B., Gilligan P. H., Stull T. L. . Inapparent transmission of Pseudomonas (Burkholderia) cepacia among patients with cystic fibrosis. Pediatr Infect Dis J 1994; 13:716–719
    [Google Scholar]
  2. Govan J. R. W., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 1996; 60:539–574
    [Google Scholar]
  3. Lacy D. E., Spencer D. A., Goldstein A., Weller P. H., Darbyshire P. Chronic granulomatous disease presenting in childhood with Pseudomonas cepacia septicaemia. J Infect 1993; 27:301–304
    [Google Scholar]
  4. Verghese A., Al-Samman M., Nabhan D., Naylor A. D., Rivera M. Bacterial bronchitis and bronchiectasis in human immunodeficiency virus infection. Arch Intern Med 1994; 154:2086–2091
    [Google Scholar]
  5. Corey M., Farewell V. Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol 1996; 143:1007–1017
    [Google Scholar]
  6. Mortensen J. E., Fisher M. C., LiPuma J. J. . Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect Control Hosp Epidemiol 1995; 16:30–32
    [Google Scholar]
  7. Butler S. L., Doherty C. J., Hughes J. E., Nelson J. W., Govan J. R. W. Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard?. J Clin Microbiol 1995; 33:1001–1004
    [Google Scholar]
  8. Hobson R., Gould I., Govan J. W. R. Burkholderia (Pseudomonas) cepacia as a cause of brain abscesses secondary to chronic suppurative otitis media. Eur J Clin Microbiol Infect Dis 1995; 14:908–911
    [Google Scholar]
  9. Govan J. W. R., Nelson J. W. . Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med 1993; 86: (Suppl 20) 11–18
    [Google Scholar]
  10. Govan J. W. R., Nelson J. W. . Microbiology of lung infection in cystic fibrosis. Br Med Bull 1992; 48:912–930
    [Google Scholar]
  11. Stableforth D. E., Smith D. L. . Pseudomonas cepacia in cystic fibrosis. Thorax 1994; 49:629–630
    [Google Scholar]
  12. Isles A., Maclusky I., Corey M. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 1984; 104:206–210
    [Google Scholar]
  13. LiPuma J. J., Dasen S. E., Nielson D. W., Stem R. C., Stull T. L. . Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 330:1094–1096
    [Google Scholar]
  14. Ouchi K., Abe M., Karita M., Oguri T., Igari J., Nakazawa T. Analysis of strains of Burkholderia (Pseudomonas) cepacia isolated in a nosocomial outbreak by biochemical and genomic typing. J Clin Microbiol 1995; 33:2353–2357
    [Google Scholar]
  15. Govan J. R. W., Brown P. H., Maddison J. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342:15–19
    [Google Scholar]
  16. Govan J. W. R., Hughes J. E., Vandamme P. Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 1996; 45:395–407
    [Google Scholar]
  17. Muhdi K., Edenborough F. P., Gumery L. Outcome for patients colonised with Burkholderia cepacia in Birmingham adult cystic fibrosis clinic and the end of an epidemic. Thorax 1996; 51:374–377
    [Google Scholar]
  18. Sun L., Jiang R.-Z., Steinbach S. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nature Med 1995; 1:661–666
    [Google Scholar]
  19. Ryley H. C., Ojeniyi B., Hoiby N., Weeks J. Lack of evidence of nosocomial cross-infection by Burkholderia cepacia among Danish cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 1996; 15:755–758
    [Google Scholar]
  20. Gotoh N., Nagino K., Wada K., Tsujimoto H., Nishino T. Burkholderia (formerly Pseudomonas) cepacia porin is an oligomer composed of two component proteins. Microbiology 1994; 140:3285–3291
    [Google Scholar]
  21. van Alphen L., van Dam A., Bol P., Spanjaard K., Zanen H. C. . Types and subtypes of 73 strains of Haemophilus influenzae isolated from patients more than 6 years of age with meningitis in the Netherlands. J Infect 1987; 15:95–101
    [Google Scholar]
  22. Parr T. R., Moore R. A., Moore L. V., Hancock R. E. W. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia. Antimicrob Agents Chemother 1987; 31:121–123
    [Google Scholar]
  23. Rainey P. B., Thompson I. P., Palleroni N. J. Genome and fatty acid analysis of Pseudomonas stutzeri. Int J Syst Bacteriol 1994; 44:54–61
    [Google Scholar]
  24. Grothues D., Tummler B. New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol Microbiol 1991; 5:2763–2776
    [Google Scholar]
  25. Lugtenberg B., Meijers J., Peters R., , van der Hoek P., , van Alphen L. Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS Lett 1975; 58:254–258
    [Google Scholar]
  26. Vandamme P., Holmes B., Vancanneyt M. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis and proposal of Burkholderia multivorans sp nov. Int J Syst Bacteriol 1997; 47:1188–1200
    [Google Scholar]
  27. Lacy D. E., Smith A. W., Lambert P. A. . Serum IgG response to an outer membrane porin protein of Burkholderia cepacia in patients with cystic fibrosis. FEMS Immunol Microbiol 1997; 17:87–94
    [Google Scholar]
  28. Hancock R. E. W., Mouat E. C. A., Speert D. P. . Quantitation and identification of antibodies to outer-membrane proteins of Pseudomonas aeruginosa in sera of patients with cystic fibrosis. J Infect Dis 1984; 149:220–226
    [Google Scholar]
  29. Tenover F. C., Arbeit R. D., Goering R. V. . Interpreting chromosomal DNA restriction patterns producted by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33:2233–2239
    [Google Scholar]
  30. Gaur D., Wilkinson S. G. . Lipopolysaccharide from Burkholderia vietnamiensis strain LMG 6999 contains two polymers identical to those present in the reference strain for Burkholderia cepacia serogrpup O4. FEMS Microbiol Lett 1997; 157:183–188
    [Google Scholar]
  31. Pitt T. L., Kaufmann M. E., Patel P. S., Benge L. C. A., Gaskin S., Livermore D. M. . Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol 1996; 44:203–210
    [Google Scholar]
  32. Baxter I. A., Lambert P. A., Simpson I. N. . Isolation from clinical sources of Burkholderia cepacia possessing characteristics of Burkholderia gladioli. J Antimicrob Chemother 1997; 39:169–175
    [Google Scholar]
  33. Barth A. L., Pitt T. L. . Auxotrophy of Burkholderia (Pseudomonas) cepacia from cystic fibrosis patients. J Clin Microbiol 1995; 33:2192–2194
    [Google Scholar]
  34. Burkholder W. Sour skin, a bacterial rot of onion bulbs. Phytopathology 1950; 40:115–117
    [Google Scholar]
  35. Yohalem D. S., Lorbeer X. W. . Intraspecific metabolic diversity among strains of Burkholderia cepacia isolated from decayed onions, soils, and the clinical environment. Antonie van Leeuwenhoek 1994; 65:111–131
    [Google Scholar]
  36. Yohalem D. S., Lorbeer X. W. . Multilocus isoenzyme diversity among strains of Pseudomonas cepacia isolated from decayed onions, soils, and clinical sources. Syst Appl Microbiol 1994; 17:116–124
    [Google Scholar]
  37. Simpson I. N., Finlay J., Winstanley D. J. . Multi-resistance isolates possessing characteristics of both Burkholderia (Pseudomonas) cepacia and Burkholderia gladioli from patients with cystic fibrosis. J Antimicrob Chemother 1994; 34:353–361
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-11-999
Loading
/content/journal/jmm/10.1099/00222615-47-11-999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error