1887

Abstract

This study evaluated the predictors of mortality and the impact of inappropriate therapy on the outcomes of patients with bacteraemia and ventilator-associated pneumonia (VAP). Additionally, we evaluated the correlation of the type III secretion system (TTSS) effector genotype with resistance to carbapenems and fluoroquinolones, mutations in the quinolone resistance-determining regions (QRDRs), metallo-β-lactamase and virulence factors. A retrospective cohort was conducted at a tertiary hospital in patients with multidrug-resistant (MDR) bacteraemia (157 patients) and VAP (60 patients). The genes for , , , and and virulence genes (, , , , , and ) were detected; sequencing was conducted for QRDR genes on fluoroquinolone-resistant strains. The multivariate analyses showed that the predictors independently associated with death in patients with bacteraemia were cancer and inappropriate therapy. Carbapenem resistance was more frequent among strains causing VAP (53.3 %), and in blood we observed the genotype (66.6 %) and genotype (33.3 %). The gene was found in all isolates, whilst the frequency was low for (9.4 %). Substitution of threonine to isoleucine at position 83 in was the most frequent mutation among fluoroquinolone-resistant strains. Our study showed a mutation at position 91 in the gene (Glu91Lys) associated with a mutation in (Thre83Ile) in a strain of extensively drug-resistant , with the genotype, that has not yet been described in Brazil to the best of our knowledge. This comprehensive analysis of resistance mechanisms to carbapenem and fluoroquinolones and their association with TTSS virulence genes, covering MDR in Brazil, is the largest reported to date.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000023
2015-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/3/262.html?itemId=/content/journal/jmm/10.1099/jmm.0.000023&mimeType=html&fmt=ahah

References

  1. Aldred K. J., Kerns R. J., Osheroff N. 2014; Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574 [View Article][PubMed]
    [Google Scholar]
  2. Andrade S. S., Sader H. S., Jones R. N., Pereira A. S., Pignatari A. C., Gales A. C. 2006; Increased resistance to first-line agents among bacterial pathogens isolated from urinary tract infections in Latin America: time for local guidelines?. Mem Inst Oswaldo Cruz 101:741–748 [View Article][PubMed]
    [Google Scholar]
  3. Bassi G. L., Ferrer M., Saucedo L. M., Torres A. 2010; Do guidelines change outcomes in ventilator-associated pneumonia?. Curr Opin Infect Dis 23:171–177 [View Article][PubMed]
    [Google Scholar]
  4. Baumgart A. M., Molinari M. A., Silveira A. C. 2010; Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in high complexity hospital. Braz J Infect Dis 14:433–436 [View Article][PubMed]
    [Google Scholar]
  5. Bleves S., Viarre V., Salacha R., Michel G. P., Filloux A., Voulhoux R. 2010; Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol 300:534–543 [View Article][PubMed]
    [Google Scholar]
  6. Breidenstein E. B., de la Fuente-Núñez C., Hancock R. E. 2011; Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426 [View Article][PubMed]
    [Google Scholar]
  7. CDC 2002; Guidelines for the prevention of intravascular catheter–related infections. MMWR Morb Mortal Wkly Rep 51:1–36
    [Google Scholar]
  8. CLSI 2014; Performance Standards for Antimicrobial Susceptibility Testing; Document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute;
  9. Davis K. A. 2006; Ventilator-associated pneumonia: a review. J Intensive Care Med 21:211–226 [View Article][PubMed]
    [Google Scholar]
  10. Edwards J. R., Peterson K. D., Andrus M. L., Tolson J. S., Goulding J. S., Dudeck M. A., Mincey R. B., Pollock D. A., Horan T. C. NHSN Facilities 2007; National Healthcare Safety Network (NHSN) Report, data summary for 2006, issued June 2007. Am J Infect Control 35:290–301 [View Article][PubMed]
    [Google Scholar]
  11. El-Solh A. A., Hattemer A., Hauser A. R., Alhajhusain A., Vora H. 2012; Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 40:1157–1163 [View Article][PubMed]
    [Google Scholar]
  12. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R. 2001; Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiology 147:2659–2669[PubMed]
    [Google Scholar]
  13. Franco M. R., Caiaffa-Filho H. H., Burattini M. N., Rossi F. 2010; Metallo-β-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 65:825–829 [View Article][PubMed]
    [Google Scholar]
  14. Galán J. E., Collmer A. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328 [View Article][PubMed]
    [Google Scholar]
  15. Galés A. C., Menezes L. C., Silbert S., Sader H. S. 2003; Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J Antimicrob Chemother 52:699–702 [View Article][PubMed]
    [Google Scholar]
  16. Garey K. W., Vo Q. P., Larocco M. T., Gentry L. O., Tam V. H. 2008; Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J Chemother 20:714–720 [CrossRef]
    [Google Scholar]
  17. Garner J. S., Jarvis W. R., Emori T. G., Horan T. C., Hughes J. M. 1996; CDC definitions for nosocomial infections. In APIC Infection Control and Applied Epidemiology: Principles and Practice pp. A1–A20 Edited by Olmsted R. N. St Louis: Mosby;
    [Google Scholar]
  18. Gasink L. B., Fishman N. O., Weiner M. G., Nachamkin I., Bilker W. B., Lautenbach E. 2006; Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am J Med 119:526.e19–526.e25 [View Article][PubMed]
    [Google Scholar]
  19. Gilbert D. N., Moellering R. C., Eliopoulos G. M., Sande M. A. 2007 The Sanford Guide to Antimicrobial Therapy, 37th edn. Sperryville, VA: Antimicrobial Therapy;
    [Google Scholar]
  20. Golovkine G., Faudry E., Bouillot S., Voulhoux R., Attrée I., Huber P. 2014; VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 10:e1003939 [View Article][PubMed]
    [Google Scholar]
  21. Gupta A., Kapil A., Lodha R., Kabra S. K., Sood S., Dhawan B., Das B. K., Sreenivas V. 2011; Burden of healthcare-associated infections in a paediatric intensive care unit of a developing country: a single centre experience using active surveillance. J Hosp Infect 78:323–326 [View Article][PubMed]
    [Google Scholar]
  22. Hauser A. R. 2009; The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665 [View Article][PubMed]
    [Google Scholar]
  23. Higgins P. G., Fluit A. C., Milatovic D., Verhoef J., Schmitz F. J. 2003; Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa . Int J Antimicrob Agents 21:409–413 [View Article][PubMed]
    [Google Scholar]
  24. Hsu D. I., Okamoto M. P., Murthy R., Wong-Beringer A. 2005; Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J Antimicrob Chemother 55:535–541 [View Article][PubMed]
    [Google Scholar]
  25. Jabalameli F., Mirsalehian A., Khoramian B., Aligholi M., Khoramrooz S. S., Asadollahi P., Taherikalani M., Emaneini M. 2012; Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns 38:1192–1197 [View Article][PubMed]
    [Google Scholar]
  26. Kang C. I., Kim S. H., Park W. B., Lee K. D., Kim H. B., Kim E. C., Oh M. D., Choe K. W. 2005; Bloodstream infections caused by antibiotic-resistant Gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother 49:760–766 [View Article][PubMed]
    [Google Scholar]
  27. Lanotte P., Watt S., Mereghetti L., Dartiguelongue N., Rastegar-Lari A., Goudeau A., Quentin R. 2004; Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 53:73–81 [View Article][PubMed]
    [Google Scholar]
  28. Lee J. K., Lee Y. S., Park Y. K., Kim B. S. 2005; Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa . Int J Antimicrob Agents 25:290–295 [View Article][PubMed]
    [Google Scholar]
  29. Lodise T. P. Jr, Patel N., Kwa A., Graves J., Furuno J. P., Graffunder E., Lomaestro B., McGregor J. C. 2007; Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 51:3510–3515 [View Article][PubMed]
    [Google Scholar]
  30. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G. et al. 2012; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281 [View Article][PubMed]
    [Google Scholar]
  31. Morales E., Cots F., Sala M., Comas M., Belvis F., Riu M., Salvadó M., Grau S., Horcajada J. P. et al. 2012; Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res 12:122–129 [View Article][PubMed]
    [Google Scholar]
  32. Moreira M. R., Guimarães M. P., Rodrigues A. A. A., Gontijo Filho P. P. 2013; Antimicrobial use, incidence, etiology and resistance patterns in bacteria causing ventilator-associated pneumonia in a clinical-surgical intensive care unit. Rev Soc Bras Med Trop 46:39–44 [View Article][PubMed]
    [Google Scholar]
  33. Mouneimné H., Robert J., Jarlier V., Cambau E. 1999; Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa . Antimicrob Agents Chemother 43:62–66[PubMed]
    [Google Scholar]
  34. Needham D. M., Scales D. C., Laupacis A., Pronovost P. J. 2005; A systematic review of the Charlson comorbidity index using Canadian administrative databases: a perspective on risk adjustment in critical care research. J Crit Care 20:12–19 [View Article][PubMed]
    [Google Scholar]
  35. Park D. R. 2005; The microbiology of ventilator-associated pneumonia. Respir Care 50:742–763, discussion 763–765[PubMed]
    [Google Scholar]
  36. Peleg A. Y., Hooper D. C. 2010; Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 362:1804–1813 [View Article][PubMed]
    [Google Scholar]
  37. Porto J. P., Santos R. O., Gontijo Filho P. P., Ribas R. M. 2013; Active surveillance to determine the impact of methicillin resistance on mortality in patients with bacteremia and influences of the use of antibiotics on the development of MRSA infection. Rev Soc Bras Med Trop 46:713–718 [View Article][PubMed]
    [Google Scholar]
  38. Rello J., Allegri C., Rodriguez A., Vidaur L., Sirgo G., Gomez F., Agbaht K., Pobo A., Diaz E. 2006; Risk factors for ventilator-associated pneumonia by Pseudomonas aeruginosa in presence of recent antibiotic exposure. Anesthesiology 105:709–714 [View Article][PubMed]
    [Google Scholar]
  39. Roberts R. R., Scott R. D. II, Hota B., Kampe L. M., Abbasi F., Schabowski S., Ahmad I., Ciavarella G. G., Cordell R. et al. 2010; Costs attributable to healthcare-acquired infection in hospitalized adults and a comparison of economic methods. Med Care 48:1026–1035 [View Article][PubMed]
    [Google Scholar]
  40. Rosenthal V. D., Maki D. G., Salomao R., Moreno C. A., Mehta Y., Higuera F., Cuellar L. E., Arikan O. A., Abouqal R., Leblebicioglu H. International Nosocomial Infection Control Consortium 2006; Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann Intern Med 145:582–591 [View Article][PubMed]
    [Google Scholar]
  41. Roy-Burman A., Savel R. H., Racine S., Swanson B. L., Revadigar N. S., Fujimoto J., Sawa T., Frank D. W., Wiener-Kronish J. P. 2001; Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774 [View Article][PubMed]
    [Google Scholar]
  42. Sader H. S., Gales A. C., Pfaller M. A., Mendes R. E., Zoccoli C., Barth A., Jones R. N. 2001; Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program. Braz J Infect Dis 5:200–214 [View Article][PubMed]
    [Google Scholar]
  43. Sader H. S., Reis A. O., Silbert S., Gales A. C. 2005; IMPs, VIMs and SPMs: the diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect 11:73–76 [View Article][PubMed]
    [Google Scholar]
  44. Suárez C., Peña C., Gavaldà L., Tubau F., Manzur A., Dominguez M. A., Pujol M., Gudiol F., Ariza J. 2010; Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int J Infect Dis 14:Suppl. 3e73–e78 [View Article][PubMed]
    [Google Scholar]
  45. Van der Bij A. K., Van Mansfeld R., Peirano G., Goessens W. H., Severin J. A., Pitout J. D., Willems R., Van Westreenen M. 2011; First outbreak of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa in The Netherlands: microbiology, epidemiology and clinical outcomes. Int J Antimicrob Agents 37:513–518 [View Article][PubMed]
    [Google Scholar]
  46. Van der Bij A. K., Van der Zwan D., Peirano G., Severin J. A., Pitout J. D., Van Westreenen M., Goessens W. H. MBL-PA Surveillance Study Group 2012; Metallo-β-lactamase-producing Pseudomonas aeruginosa in the Netherlands: the nationwide emergence of a single sequence type. Clin Microbiol Infect 18:E369–E372 [View Article][PubMed]
    [Google Scholar]
  47. Voor In’t Holt A. F., Severin J. A., Lesaffre E. M., Vos M. C. 2014; A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 58:2626–2637 [View Article][PubMed]
    [Google Scholar]
  48. Wareham D. W., Curtis M. A. 2007; A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol 297:227–234 [View Article][PubMed]
    [Google Scholar]
  49. Wong-Beringer A., Wiener-Kronish J., Lynch S., Flanagan J. 2008; Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa . Clin Microbiol Infect 14:330–336 [View Article][PubMed]
    [Google Scholar]
  50. Woodford N. 2010; Rapid characterization of β-lactamases by multiplex PCR. Methods Mol Biol 642:181–192 [View Article][PubMed]
    [Google Scholar]
  51. Zilberberg M. D., Shorr A. F. 2010; Ventilator-associated pneumonia: the clinical pulmonary infection score as a surrogate for diagnostics and outcome. Clin Infect Dis 51:Suppl. 1S131–S135 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000023
Loading
/content/journal/jmm/10.1099/jmm.0.000023
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error