1887

Abstract

Accurate susceptibility results on antibiotic-resistant bacteria are essential for proper treatment of infections. In this study, 100 metallo-β-lactamase (MBL)-producing strains and 95 isolates with carbapenemase (KPC) were tested for carbapenem susceptibility using two automated platforms, the Phoenix and Vitek-2 systems, and a manual Etest. Phoenix showed higher categorical agreements (97 % for imipenem and 94 % for meropenem) compared with those from Vitek-2 (92 and 74 %) and Etest (89 and 96 %), respectively, when testing MBL strains. Categorical agreement for imipenem tests with KPC-producing strains was 88.4 % with the Phoenix system, 83.2 % with the Vitek 2 system and 90.5 % with the Etest. Categorical agreement was 100 % for all tests with ertapenem. In conclusion, the Phoenix system demonstrated a higher accuracy than Vitek-2 in testing carbapenemase-producing strains, particularly in MBL strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000067
2015-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/6/620.html?itemId=/content/journal/jmm/10.1099/jmm.0.000067&mimeType=html&fmt=ahah

References

  1. Bulik C. C., Fauntleroy K. A., Jenkins S. G., Abuali M., LaBombardi V. J., Nicolau D. P., Kuti J. L. 2010; Comparison of meropenem MICs and susceptibilities for carbapenemase-producing Klebsiella pneumoniae isolates by various testing methods. J Clin Microbiol 48:2402–2406 [View Article][PubMed]
    [Google Scholar]
  2. Carmeli Y., Akova M., Cornaglia G., Daikos G. L., Garau J., Harbarth S., Rossolini G. M., Souli M., Giamarellou H. 2010; Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect 16:102–111 [CrossRef]
    [Google Scholar]
  3. CLSI 2012 Performance Standards for Antimicrobial Susceptibility Testing 22nd Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  4. CLSI 2015 Performance Standards for Antimicrobial Susceptibility Testing 25th Informational Supplement M100-S25 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Doern C. D., Dunne W. M. Jr, Burnham C. A. 2011; Detection of Klebsiella pneumoniae carbapenemase (KPC) production in non-Klebsiella pneumoniae Enterobacteriaceae isolates by use of the Phoenix, Vitek 2, and disk diffusion methods. J Clin Microbiol 49:1143–1147 [View Article][PubMed]
    [Google Scholar]
  6. Espedido B. A., Thomas L. C., Iredell J. R. 2007; Metallo-β-lactamase or extended-spectrum β-lactamase: a wolf in sheep's clothing. J Clin Microbiol 45:2034–2036 [View Article][PubMed]
    [Google Scholar]
  7. Giakkoupi P., Tzouvelekis L. S., Daikos G. L., Miriagou V., Petrikkos G., Legakis N. J., Vatopoulos A. C. 2005; Discrepancies and interpretation problems in susceptibility testing of VIM-1-producing Klebsiella pneumoniae isolates. J Clin Microbiol 43:494–496 [View Article][PubMed]
    [Google Scholar]
  8. Kollef K. E., Schramm G. E., Wills A. R., Reichley R. M., Micek S. T., Kollef M. H. 2008; Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant Gram-negative bacteria. Chest 134:281–287 [View Article][PubMed]
    [Google Scholar]
  9. Queenan A. M., Bush K. 2007; Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20:440–458 [View Article][PubMed]
    [Google Scholar]
  10. Sabuda D. M., Laupland K., Pitout J., Dalton B., Rabin H., Louie T., Conly J. 2008; Utilization of colistin for treatment of multidrug-resistant Pseudomonas aeruginosa . Can J Infect Dis Med Microbiol 19:413–418
    [Google Scholar]
  11. Souli M., Kontopidou F. V., Papadomichelakis E., Galani I., Armaganidis A., Giamarellou H. 2008; Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek University Hospital. Clin Infect Dis 46:847–854 [View Article][PubMed]
    [Google Scholar]
  12. Tumbarello M., Sanguinetti M., Montuori E., Trecarichi E. M., Posteraro B., Fiori B., Citton R., D'Inzeo T., Fadda G., other authors. 2007; Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51:1987–1994 [View Article][PubMed]
    [Google Scholar]
  13. Woodford N., Eastaway A. T., Ford M., Leanord A., Keane C., Quayle R. M., Steer J. A., Zhang J., Livermore D. M. 2010; Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae . J Clin Microbiol 48:2999–3002 [View Article][PubMed]
    [Google Scholar]
  14. Zavascki A. P., Barth A. L., Gonçalves A. L., Moro A. L., Fernandes J. F., Martins A. F., Ramos F., Goldani L. Z. 2006; The influence of metallo-β-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother 58:387–392 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000067
Loading
/content/journal/jmm/10.1099/jmm.0.000067
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error