1887

Abstract

An alarming increase in the resistance rates of tigecycline and colistin among carbapenemase-producing recovered from a Greek hospital over a 3-year period (2011–2013) was investigated. The antimicrobial resistance profiles and carbapenemase gene content were determined for a collection of colistin- and/or tigecycline-resistant carbapenemase-producing isolates ( = 42), which were recovered consecutively during the study period. A gradual increase in the incidence of producers was observed from 2011 to 2013. A cluster of 21 isolates comprised tigecycline-resistant producers displayed a single antimicrobial resistance pattern. The emergence of two producers resistant to both tigecycline and colistin was documented. Furthermore, determination of the mechanisms of colistin and tigecycline resistance and molecular typing by the tri-locus sequence typing (3LST) scheme for nine isolates recovered from bloodstream infections were performed. Out of nine isolates, five tigecycline- and two colistin-resistant isolates were producers of 3LST ST101 corresponding to the international clone II recovered during 2012–2013. All nine isolates were positive for the presence of the gene of the AdeABC efflux pump. Three colistin-resistant isolates possessed novel substitutions in PmrB, which may be implicated in colistin resistance. To the best of our knowledge, this is the first report of the acquisition of tigecycline and colistin resistance among -producing of 3LST ST101 in Greece; thus, continuous surveillance and molecular characterization, prudent use of antibiotics and implementation of infection control measures for are urgent.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000127
2015-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/9/993.html?itemId=/content/journal/jmm/10.1099/jmm.0.000127&mimeType=html&fmt=ahah

References

  1. Bartha N. A., Sóki J., Urbán E., Nagy E. 2011; Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int J Antimicrob Agents 38:522–525 [View Article][PubMed]
    [Google Scholar]
  2. Bassetti M., Righi E., Esposito S., Petrosillo N., Nicolini L. 2008; Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol 3:649–660 [View Article][PubMed]
    [Google Scholar]
  3. Beceiro A., Llobet E., Aranda J., Bengoechea J. A., Doumith M., Hornsey M., Dhanji H., Chart H., Bou G., other authors. 2011; Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55:3370–3379 [View Article][PubMed]
    [Google Scholar]
  4. CLSI 2013 Performance Standards for Antimicrobial Susceptibility Testing 23rd Informational Supplement M100-S23 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Deng M., Zhu M.-H., Li J.-J., Bi S., Sheng Z.-K., Hu F.-S., Zhang J.-J., Chen W., Xue X.-W., other authors. 2014; Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother 58:297–303 [View Article][PubMed]
    [Google Scholar]
  6. Hou P. F., Chen X. Y., Yan G. F., Wang Y. P., Ying C. M. 2012; Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of Acinetobacter baumannii . Chemotherapy 58:152–158 [View Article][PubMed]
    [Google Scholar]
  7. Karaiskos I., Giamarellou H. 2014; Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15:1351–1370 [View Article][PubMed]
    [Google Scholar]
  8. Liakopoulos A., Miriagou V., Katsifas E. A., Karagouni A. D., Daikos G. L., Tzouvelekis L. S., Petinaki E. 2012; Identification of OXA-23-producing Acinetobacter baumannii in Greece, 2010 to 2011. Euro Surveill 17:20117[PubMed]
    [Google Scholar]
  9. Maragakis L. L., Perl T. M. 2008; Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 46:1254–1263 [View Article][PubMed]
    [Google Scholar]
  10. Mendes R. E., Farrell D. J., Sader H. S., Jones R. N. 2010; Comprehensive assessment of tigecycline activity tested against a worldwide collection of Acinetobacter spp. (2005–2009). Diagn Microbiol Infect Dis 68:307–311 [View Article][PubMed]
    [Google Scholar]
  11. Miyakis S., Pefanis A., Tsakris A. 2011; The challenges of antimicrobial drug resistance in Greece. Clin Infect Dis 53:177–184 [View Article][PubMed]
    [Google Scholar]
  12. Montefour K., Frieden J., Hurst S., Helmich C., Headley D., Martin M., Boyle D. A. 2008; Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 28:15–25, quiz 26[PubMed]
    [Google Scholar]
  13. Perez F., Hujer A. M., Hujer K. M., Decker B. K., Rather P. N., Bonomo R. A. 2007; Global challenge of multidrug-resistant Acinetobacter baumannii . Antimicrob Agents Chemother 51:3471–3484 [View Article][PubMed]
    [Google Scholar]
  14. Poulakou G., Kontopidou F. V., Paramythiotou E., Kompoti M., Katsiari M., Mainas E., Nicolaou C., Yphantis D., Antoniadou A., other authors. 2009; Tigecycline in the treatment of infections from multi-drug resistant Gram-negative pathogens. J Infect 58:273–284 [View Article][PubMed]
    [Google Scholar]
  15. Reis A. O., Luz D. A., Tognim M. C., Sader H. S., Gales A. C. 2003; Polymyxin-resistant Acinetobacter spp. isolates: what is next?. Emerg Infect Dis 9:1025–1027 [View Article][PubMed]
    [Google Scholar]
  16. Samonis G., Matthaiou D. K., Kofteridis D., Maraki S., Falagas M. E. 2010; In vitro susceptibility to various antibiotics of colistin-resistant Gram-negative bacterial isolates in a general tertiary hospital in Crete, Greece. Clin Infect Dis 50:1689–1691[PubMed] [CrossRef]
    [Google Scholar]
  17. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  18. Turton J. F., Gabriel S. N., Valderrey C., Kaufmann M. E., Pitt T. L. 2007; Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii . Clin Microbiol Infect 13:807–815 [View Article][PubMed]
    [Google Scholar]
  19. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353 [View Article][PubMed]
    [Google Scholar]
  20. Zarrilli R., Pournaras S., Giannouli M., Tsakris A. 2013; Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41:11–19 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000127
Loading
/content/journal/jmm/10.1099/jmm.0.000127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error