1887

Abstract

Respiratory infections are common causes of morbidity and mortality worldwide. We sought to assess the multiple antibiotic resistance (MAR) index, fitness and virulence potential in from patients with lower respiratory tract infections. Isolates were assessed for antimicrobial susceptibility, competitive fitness, and pigment, elastase and rhamnolipid production. Oxidative stress tolerance was determined on both planktonic and biofilm cells, and virulence potential was tested in a plant model. Mean MAR index for isolates was 0.34 (range 0.17–0.50). Whilst isolates exhibited good biofilm formation in the presence of ciprofloxacin, there was no significant difference in biofilm production over the concentration range assessed. Several drug-resistant strains were out-competed by a susceptible strain even in the presence of antibiotic. HO exerted a greater oxidative stress than tert-butyl-hydroperoxide and, as expected, biofilms were more resistant than planktonic cells. Whilst most (81 %) isolates were pigmented there was no significant difference between pigmented and non-pigmented isolates when elastolytic activity was compared (>0.05). More than half of the isolates produced the quorum sensing mediator rhamnolipid and infection of the plant model by bacteria occurred whether elastase or rhamnolipid was present or absent. These data suggest that non-pigmented strains of might pose an equally significant microbiological threat as pigmented strains even though pigment production appeared to be strongly associated with elastase expression. Whilst dual expression of elastase and rhamnolipid by these bacteria would cause severe tissue damage (as seen in the plant model), non-production of either does not prevent bacteria from causing serious infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000229
2016-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/4/261.html?itemId=/content/journal/jmm/10.1099/jmm.0.000229&mimeType=html&fmt=ahah

References

  1. Agarwal G., Kapil A., Kabra S. K., Das B. K., Dwivedi S. N. 2005; In vitro efficacy of ciprofloxacin and gentamicin against a biofilm of Pseudomonas aeruginosa and its free-living forms. Natl Med J India 18:184–186[PubMed]
    [Google Scholar]
  2. Akpaka P. E., Sue-Ho, Bodonaik N. C. 2002; Frequency of occurrence and antibiotic resistance in bacteria isolated from patients in the Intensive Care Unit. West Indian Med J 51:(Suppl. 3)17
    [Google Scholar]
  3. Bakke R., Kommedal R., Kalvenes S. 2001; Quantification of biofilm accumulation by an optical approach. J Microbiol Methods 44:13–26 [View Article][PubMed]
    [Google Scholar]
  4. Bazire A., Diab F., Taupin L., Rodrigues S., Jebbar M., Dufour A. 2009; Effects of osmotic stress on rhamnolipid synthesis and time-course production of cell-to-cell signal molecules by Pseudomonas aeruginosa . Open Microbiol J 3:128–135 [View Article][PubMed]
    [Google Scholar]
  5. Bhatter P., Chatterjee A., D'souza D., Tolani M., Mistry N. 2012; Estimating fitness by competition assays between drug susceptible and resistant Mycobacterium tuberculosis of predominant lineages in Mumbai, India. PLoS One 7:e33507 [View Article][PubMed]
    [Google Scholar]
  6. Bjarnsholt T., Jensen P.Ø., Jakobsen T. H., Phipps R., Nielsen A. K., Rybtke M. T., Tolker-Nielsen T., Givskov M., Høiby N., other authors. 2010; Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5:e10115 [View Article][PubMed]
    [Google Scholar]
  7. Brown P. D., Izundu A. 2004; Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev Panam Salud Publica 16:125–130 [View Article][PubMed]
    [Google Scholar]
  8. Byarugaba D. K. 2004; A view on antimicrobial resistance in developing countries and responsible risk factors. Int J Antimicrob Agents 24:105–110 [View Article][PubMed]
    [Google Scholar]
  9. CLSI 2011 Performance Standard for Antimicrobial Disk Susceptibility Testing 21st Informational Supplement M100-S21 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  10. Dekimpe V., Déziel E. 2009; Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155:712–723 [View Article][PubMed]
    [Google Scholar]
  11. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Cámara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43 [View Article][PubMed]
    [Google Scholar]
  12. Diggle S. P., Griffin A. S., Campbell G. S., West S. A. 2007; Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414 [View Article][PubMed]
    [Google Scholar]
  13. Filiatrault M. J., Picardo K. F., Ngai H., Passador L., Iglewski B. H. 2006; Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 74:4237–4245 [View Article][PubMed]
    [Google Scholar]
  14. Fine J. M. 1996; Aetiology and incidence of community-acquired pneumonia. Infect Dis Clin Pract 5:(Suppl. 4)127–135
    [Google Scholar]
  15. Finlayson E. A., Brown P. D. 2011; Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented Pseudomonas aeruginosa . West Indian Med J 60:24–32[PubMed]
    [Google Scholar]
  16. Garnier P. M., Auria R., Augur C., Revah S. 1999; Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503 [View Article][PubMed]
    [Google Scholar]
  17. Griffin A. S., West S. A., Buckling A. 2004; Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027 [View Article][PubMed]
    [Google Scholar]
  18. Gunther N. W. IV, Nuñez A., Fett W., Solaiman D. K. 2005; Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293 [View Article][PubMed]
    [Google Scholar]
  19. Henwood C. J., Livermore D. M., James D., Warner M., Pseudomonas Study Group. 2001; Antimicrobial susceptibility of Pseudomonas aeruginosa: results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. J Antimicrob Chemother 47:789–799 [View Article][PubMed]
    [Google Scholar]
  20. Hogardt M., Heesemann J. 2013; Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 358:91–118[PubMed]
    [Google Scholar]
  21. Huston W. M., Potter A. J., Jennings M. P., Rello J., Hauser A. R., McEwan A. G. 2004; Survey of ferroxidase expression and siderophore production in clinical isolates of Pseudomonas aeruginosa . J Clin Microbiol 42:2806–2809 [View Article][PubMed]
    [Google Scholar]
  22. Jorgensen J. H., Ferraro M. J. 2009; Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755 [View Article][PubMed]
    [Google Scholar]
  23. Khan W., Bernier S. P., Kuchma S. L., Hammond J. H., Hasan F., O'Toole G. A. 2010; Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 13:207–212[PubMed]
    [Google Scholar]
  24. Krumperman P. H. 1983; Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170[PubMed]
    [Google Scholar]
  25. Kugelberg E., Löfmark S., Wretlind B., Andersson D. I. 2005; Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa . J Antimicrob Chemother 55:22–30 [View Article][PubMed]
    [Google Scholar]
  26. Kwasny S. M., Opperman T. J. 2010; Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol 13:A.8[PubMed]
    [Google Scholar]
  27. Landman D., Bratu S., Kochar S., Panwar M., Trehan M., Doymaz M., Quale J. 2007; Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 60:78–82[PubMed] [CrossRef]
    [Google Scholar]
  28. Lenski R. E. 1991; Quantifying fitness and gene stability in microorganisms. Biotechnology 15:173–192[PubMed]
    [Google Scholar]
  29. Li X. J., Li Q., Si L. Y., Yuan Q. Y. 2011; Bacteriological differences between COPD exacerbation and community-acquired pneumonia. Respir Care 56:1818–1824 [View Article][PubMed]
    [Google Scholar]
  30. Meacham K. J., Zhang L., Foxman B., Bauer R. J., Marrs C. F. 2003; Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J Clin Microbiol 41:5224–5226 [View Article][PubMed]
    [Google Scholar]
  31. Merritt J. H., Kadouri D. E., O'Toole G. A. 2011; Growing and analyzing static biofilms. Curr Protoc Pharmacol 1:B1
    [Google Scholar]
  32. Meyer J. M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H. 1997; Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43 [View Article][PubMed]
    [Google Scholar]
  33. Moreno L. Z., Castilla K. S., de Gobbi D. D., Coutinho T. A., Ferreira T.S.P., Moreno A. M. 2011; ERIC-PCR genotypic characterization of Haemophilus parasuis isolated from Brazilian swine. Braz J Microbiol 42:1420–1426 [View Article][PubMed]
    [Google Scholar]
  34. Olayinka A. T., Olayinka B. O., Onile B. A. 2009; Antibiotic susceptibility and plasmid pattern of Pseudomonas aeruginosa from the surgical unit of a university teaching hospital in north central Nigeria. Int J Med Sci 1:079–083
    [Google Scholar]
  35. Olson J. C., Ohman D. E. 1992; Efficient production and processing of elastase and LasA by Pseudomonas aeruginosa require zinc and calcium ions. J Bacteriol 174:4140–4147[PubMed]
    [Google Scholar]
  36. Owen J. G., Ackerley D. F. 2011; Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 11:218 [View Article][PubMed]
    [Google Scholar]
  37. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132[PubMed]
    [Google Scholar]
  38. Prabhu V., Isloor S., Balu M., Suryanaryana V.V.S., Rathnamma D. 2010; Genotyping by ERIC-PCR of Escherichia coli isolated from bovine mastitis cases. Indian J Biotechnol 9:298–301
    [Google Scholar]
  39. Rahme L. G., Tan M. W., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250 [View Article][PubMed]
    [Google Scholar]
  40. Riaz S., Faisal M., Hasnain S. 2011; Antibiotic susceptibility pattern and multiple antibiotic resistances (MAR) calculation of extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella species in Pakistan. Afr J Biotechnol 10:6325–6331
    [Google Scholar]
  41. Rozen D. E., McGee L., Levin B. R., Klugman K. P. 2007; Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae . Antimicrob Agents Chemother 51:412–416 [View Article][PubMed]
    [Google Scholar]
  42. Sandoz K. M., Mitzimberg S. M., Schuster M. 2007; Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104:15876–15881 [View Article][PubMed]
    [Google Scholar]
  43. Segev-Zarko L., Saar-Dover R., Brumfeld V., Mangoni M. L., Shai Y. 2015; Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem J 468:259–270 [View Article][PubMed]
    [Google Scholar]
  44. Shah B. A., Singh G., Naik M. A., Dhobi G. N. 2010; Bacteriological and clinical profile of community acquired pneumonia in hospitalized patients. Lung India 27:54–57 [View Article][PubMed]
    [Google Scholar]
  45. Somprasong N., Jittawuttipoka T., Duang-Nkern J., Romsang A., Chaiyen P., Schweizer H. P., Vattanaviboon P., Mongkolsuk S. 2012; Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation. J Bacteriol 194:3904–3912 [View Article][PubMed]
    [Google Scholar]
  46. Travisano M., Lenski R. E. 1996; Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143:15–26[PubMed]
    [Google Scholar]
  47. Wagner V. E., Filiatrault M. J., Picardo K. F., Iglewski B. H. 2008; Pseudomonas aeruginosa: virulence and pathogenesis issues. In Pseudomonas: Genomics and Molecular Biology pp 129–158 Edited by Cornelis P. Norfolk: Caister Academic Press;
    [Google Scholar]
  48. West S. A., Buckling A. 2003; Cooperation, virulence and siderophore production in bacterial parasites. Proc Biol Sci 270:37–44 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000229
Loading
/content/journal/jmm/10.1099/jmm.0.000229
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error