1887

Abstract

Understanding how inhaled achieves dramatic replication and crosses the alveolar barrier to establish systemic latent infection, before adaptive immunity is elicited in humans, is limited by the small infecting inoculum carried in aerosol droplets (1–5 μm diameter) and the inability to identify the time of infection. is believed to disseminate via infected macrophages. However, like other invasive bacterial pathogens, could also cross the barrier directly using adhesins and toxins. An alveolar barrier mimicking the gas-exchange regions of the alveolus was devised comprising monolayers of human alveolar epithelial and endothelial cells cultured on opposing sides of a basement membrane. Migration of dissemination-competent strains of , and dissemination-attenuated and mutant strains lacking adhesin/toxin ESAT-6 and adhesin HBHA were tested for macrophage-free migration across the barrier. Strains that disseminate similarly migrated similarly across the alveolar barrier. Strains lacking ESAT-6 expression/secretion were attenuated, and absence of both ESAT-6 and HBHA increased attenuation of bacterial migration across the barrier. Thus, as reported for other bacteria, utilizes adhesins and toxins for macrophage-independent crossing of the alveolar barrier. This model will allow identification and characterization of molecules/mechanisms employed by to establish systemic latent tuberculosis infection during primary infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000238
2016-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/362.html?itemId=/content/journal/jmm/10.1099/jmm.0.000238&mimeType=html&fmt=ahah

References

  1. Ashiru O. T., Pillay M., Sturm A. W. 2010; Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis . J Med Microbiol 59:528–533 [View Article][PubMed]
    [Google Scholar]
  2. Barrios-Payán J., Saqui-Salces M., Jeyanathan M., Alcántara-Vazquez A., Castañon-Arreola M., Rook G., Hernandez-Pando R. 2012; Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis 206:1194–1205 [View Article][PubMed]
    [Google Scholar]
  3. Bermudez L. E., Sangari F. J., Kolonoski P., Petrofsky M., Goodman J. 2002; The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70:140–146 [View Article][PubMed]
    [Google Scholar]
  4. Bierne H., Sabet C., Personnic N., Cossart P. 2007; Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes . Microbes Infect 9:1156–1166 [View Article][PubMed]
    [Google Scholar]
  5. Castro-Garza J., King C. H., Swords W. E., Quinn F. D. 2002; Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett 212:145–149 [View Article][PubMed]
    [Google Scholar]
  6. Caws M., Thwaites G., Dunstan S., Hawn T. R., Lan N. T. N., Thuong N. T. T., Stepniewska K., Huyen M. N. T., Bang N. D., other authors. 2008; The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis . PLoS Pathog 4:e1000034 [View Article][PubMed]
    [Google Scholar]
  7. Chackerian A. A., Alt J. M., Perera T. V., Dascher C. C., Behar S. M. 2002; Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509 [View Article][PubMed]
    [Google Scholar]
  8. Chen S. M., Tsai Y. S., Wu C. M., Liao S. K., Wu L. C., Chang C. S., Liu Y. H., Tsai P. J. 2010; Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. BMC Microbiol 10:320 [View Article][PubMed]
    [Google Scholar]
  9. Click E. S., Moonan P. K., Winston C. A., Cowan L. S., Oeltmann J. E. 2012; Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis 54:211–219 [View Article][PubMed]
    [Google Scholar]
  10. Delogu G., Sanguinetti M., Posteraro B., Rocca S., Zanetti S., Fadda G. 2006; The hbhA gene of Mycobacterium tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice. Infect Immun 74:3006–3011 [View Article][PubMed]
    [Google Scholar]
  11. Dobos K. M., Spotts E. A., Quinn F. D., King C. H. 2000; Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun 68:6300–6310 [View Article][PubMed]
    [Google Scholar]
  12. Doran K. S., Banerjee A., Disson O., Lecuit M. 2013; Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 3:a010090 [View Article][PubMed]
    [Google Scholar]
  13. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P. 2004; FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649 [View Article][PubMed]
    [Google Scholar]
  14. Fontán P., Aris V., Ghanny S., Soteropoulos P., Smith I. 2008; Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76:717–725 [View Article][PubMed]
    [Google Scholar]
  15. Frigui W., Bottai D., Majlessi L., Monot M., Josselin E., Brodin P., Garnier T., Gicquel B., Martin C., other authors. 2008; Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33 [View Article][PubMed]
    [Google Scholar]
  16. Furuyama A., Mochitate K. 2000; Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro. J Cell Sci 113:859–868[PubMed]
    [Google Scholar]
  17. Gagneux S., Small P. M. 2007; Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7:328–337 [View Article][PubMed]
    [Google Scholar]
  18. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis . Mol Microbiol 51:359–370 [View Article][PubMed]
    [Google Scholar]
  19. Hernández-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., Rook G. A. W., Bjune G. 2000; Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356:2133–2138 [View Article][PubMed]
    [Google Scholar]
  20. Hernández-Pando R., Aguilar D., Cohen I., Guerrero M., Ribon W., Acosta P., Orozco H., Marquina B., Salinas C., other authors. 2010; Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb) 90:268–277 [View Article][PubMed]
    [Google Scholar]
  21. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C., other authors. 2003; The primary mechanism of attenuation of bacillus Calmette-Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420–12425 [View Article][PubMed]
    [Google Scholar]
  22. Kinhikar A. G., Vargas D., Li H., Mahaffey S. B., Hinds L., Belisle J. T., Laal S. 2006; Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60:999–1013 [View Article][PubMed]
    [Google Scholar]
  23. Kinhikar A. G., Verma I., Chandra D., Singh K. K., Weldingh K., Andersen P., Hsu T., Jacobs W. R. Jr., Laal S. 2010; Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75:92–106 [View Article][PubMed]
    [Google Scholar]
  24. Kong Y., Cave M. D., Zhang L., Foxman B., Marrs C. F., Bates J. H., Yang Z. H. 2007; Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 45:409–414 [View Article][PubMed]
    [Google Scholar]
  25. Kuo C. J., Bell H., Hsieh C. L., Ptak C. P., Chang Y. F. 2012; Novel mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem 287:1892–1902 [View Article][PubMed]
    [Google Scholar]
  26. Laal S. 2012; How does Mycobacterium tuberculosis establish infection?. J Infect Dis 206:1157–1159 [View Article][PubMed]
    [Google Scholar]
  27. Lewis K. N., Liao R., Guinn K. M., Hickey M. J., Smith S., Behr M. A., Sherman D. R. 2003; Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis 187:117–123 [View Article][PubMed]
    [Google Scholar]
  28. Marriott H. M., Mitchell T. J., Dockrell D. H. 2008; Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 8:497–509 [View Article][PubMed]
    [Google Scholar]
  29. McCormick B. A. 2003; The use of transepithelial models to examine host-pathogen interactions. Curr Opin Microbiol 6:77–81 [View Article][PubMed]
    [Google Scholar]
  30. McDonough K. A., Kress Y. 1995; Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis . Infect Immun 63:4802–4811[PubMed]
    [Google Scholar]
  31. Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr., Quinn F. D. 1996; Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun 64:2673–2679[PubMed]
    [Google Scholar]
  32. Neyrolles O., Hernández-Pando R., Pietri-Rouxel F., Fornès P., Tailleux L., Barrios Payán J. A., Pivert E., Bordat Y., Aguilar D., other authors. 2006; Is adipose tissue a place for Mycobacterium tuberculosis persistence?. PLoS One 1:e43 [View Article][PubMed]
    [Google Scholar]
  33. Nobbs A. H., Lamont R. J., Jenkinson H. F. 2009; Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450 [View Article][PubMed]
    [Google Scholar]
  34. Ordway D., Palanisamy G., Henao-Tamayo M., Smith E. E., Shanley C., Orme I. M., Basaraba R. J. 2007; The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179:2532–2541 [View Article][PubMed]
    [Google Scholar]
  35. Palanisamy G. S., Smith E. E., Shanley C. A., Ordway D. J., Orme I. M., Basaraba R. J. 2008; Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb) 88:295–306 [View Article][PubMed]
    [Google Scholar]
  36. Palanisamy G. S., DuTeau N., Eisenach K. D., Cave D. M., Theus S. A., Kreiswirth B. N., Basaraba R. J., Orme I. M. 2009; Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb) 89:203–209 [View Article][PubMed]
    [Google Scholar]
  37. Pallen M. J. 2002; The ESAT-6/WXG100 superfamily - and a new Gram-positive secretion system?. Trends Microbiol 10:209–212 [View Article][PubMed]
    [Google Scholar]
  38. Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D. 2001; The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194 [View Article][PubMed]
    [Google Scholar]
  39. Phillips J. R., Tripp T. J., Regelmann W. E., Schlievert P. M., Wangensteen O. D. 2006; Staphylococcal alpha-toxin causes increased tracheal epithelial permeability. Pediatr Pulmonol 41:1146–1152 [View Article][PubMed]
    [Google Scholar]
  40. Powers M. E., Kim H. K., Wang Y., Bubeck Wardenburg J. 2012; ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 206:352–356 [View Article][PubMed]
    [Google Scholar]
  41. Richter J. F., Gitter A. H., Günzel D., Weiss S., Mohamed W., Chakraborty T., Fromm M., Schulzke J. D. 2009; Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. Am J Physiol Gastrointest Liver Physiol 296:G1350–G1359 [View Article][PubMed]
    [Google Scholar]
  42. Ryndak M., Wang S., Smith I. 2008; PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16:528–534 [View Article][PubMed]
    [Google Scholar]
  43. Ryndak M. B., Singh K. K., Peng Z., Zolla-Pazner S., Li H., Meng L., Laal S. 2014; Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 9:e94939 [View Article][PubMed]
    [Google Scholar]
  44. Ryndak M. B., Singh K. K., Peng Z., Laal S. 2015; Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells. PLoS One 10:e0123745 [View Article][PubMed]
    [Google Scholar]
  45. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D., other authors. 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [View Article][PubMed]
    [Google Scholar]
  46. Sinha B., François P. P., Nüsse O., Foti M., Hartford O. M., Vaudaux P., Foster T. J., Lew D. P., Herrmann M., Krause K. H. 1999; Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1 . Cell Microbiol 1:101–117 [View Article][PubMed]
    [Google Scholar]
  47. Soong G., Martin F. J., Chun J., Cohen T. S., Ahn D. S., Prince A. 2011; Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J Biol Chem 286:35891–35898 [View Article][PubMed]
    [Google Scholar]
  48. Suárez M., González-Zorn B., Vega Y., Chico-Calero I., Vázquez-Boland J. A. 2001; A role for ActA in epithelial cell invasion by Listeria monocytogenes . Cell Microbiol 3:853–864 [View Article][PubMed]
    [Google Scholar]
  49. Vidal Pessolani M. C., de Melo Marques M. A., Reddy V. M., Locht C., Menozzi F. D. 2003; Systemic dissemination in tuberculosis and leprosy: do mycobacterial adhesins play a role?. Microbes Infect 5:677–684 [View Article][PubMed]
    [Google Scholar]
  50. Vir P., Gupta D., Agarwal R., Verma I. 2014; Interaction of alveolar epithelial cells with CFP21, a mycobacterial cutinase-like enzyme. Mol Cell Biochem 396:187–199 [View Article][PubMed]
    [Google Scholar]
  51. Wolf A. J., Desvignes L., Linas B., Banaiee N., Tamura T., Takatsu K., Ernst J. D. 2008; Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000238
Loading
/content/journal/jmm/10.1099/jmm.0.000238
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error