1887

Abstract

KH has two acid -lactamases with isoelectric points (pIs) of 4.6 and 5.4, and several basic -lactamases (pIs >7.0) that produce a ladder-shaped pattern by IEF. An isogenic L2 mutant, KHL2, was constructed by gene replacement. From IEF and native PAGE zymograms of strains KH and KHL2, it was demonstrated that the basic -lactamases and the acid -lactamase with pI 5.4 are encoded by the same L2 gene and that the active types of these L2 charge variants were dependent on the buffer pH. The -lactamase activities of these L2 charge variants in phosphate buffer at pH 7.0 and 8.0 were 1075±29 and 1114±81 U mg, respectively. These results indicate that L2 charge variants give a better chance of adapting and surviving in response to changes in the environment.

Keyword(s): pI, isoelectric point
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000380-0
2009-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/3/318.html?itemId=/content/journal/jmm/10.1099/jmm.0.000380-0&mimeType=html&fmt=ahah

References

  1. Alonso A., Martinez J. I. 1997; Multiple antimicrobial resistance in Stenotrophomonas maltophilia . Antimicrob Agents Chemother 41:1140–1142
    [Google Scholar]
  2. Bicknell R., Emanuel E. L., Gagnon J., Waley S. G. 1985; The production and molecular properties of the zinc β -lactamase of Pseudomonas maltophilia IID 1275. Biochem J 229:791–797
    [Google Scholar]
  3. Bollet C., Davin-Regli A., De Micco P. 1995; A simple method for selective isolation of Stenotrophomonas maltophilia from environmental samples. Appl Environ Microbiol 61:1653–1654
    [Google Scholar]
  4. Cartwright S. J., Waley S. G. 1984; Purification of β -lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J 221:505–512
    [Google Scholar]
  5. Crossman L. C., Gould V. C., Dow J. M., Vernikos G. S., Okazaki A., Sebaihia M., Saunders D., Arrowsmith C., Carver T. other authors 2008; The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74 [CrossRef]
    [Google Scholar]
  6. Denton M., Kerr K. G. 1998; Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia . Clin Microbiol Rev 11:57–80
    [Google Scholar]
  7. Denton M., Keer V., Hawkey P. M. 1999; Correlation between genotype and β -lactamases of clinical and environmental strains of Stenotrophomonas maltophilia . J Antimicrob Chemother 43:555–558 [CrossRef]
    [Google Scholar]
  8. Hu R. M., Huang K. J., Wu L. T., Hsiao Y. J., Yang T. C. 2008; Induction of L1 and L2 β -lactamases of Stenotrophomonas maltophilia . Antimicrob Agents Chemother 52:1198–1200 [CrossRef]
    [Google Scholar]
  9. Huovinen S. 1988; Rapid isoelectric focusing of plasmid-mediated β -lactamases with Pharmacia PhastSystem. Antimicrob Agents Chemother 32:1730–1732 [CrossRef]
    [Google Scholar]
  10. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  11. Mathew A., Harris A. M., Marshall M. J., Ross G. W. 1975; The use of analytical isoelectric focusing for detection and identification of β -lactamases. J Gen Microbiol 88:169–178 [CrossRef]
    [Google Scholar]
  12. Matthew M., Harris A. M. 1976; Identification of beta-lactamases by analytical isoelectric focusing: correction with bacterial taxonomy. J Gen Microbiol 94:55–67 [CrossRef]
    [Google Scholar]
  13. Papapetropoulou M., Iliopoulou J., Rodopoulou G., Detorakis J., Paniara O. 1994; Occurrence and antibiotic resistance of Pseudomonas species isolated from drinking water in southern Greece. J Chemother 6:111–116
    [Google Scholar]
  14. Paton R., Miles R. S., Amyes S. G. N. 1994; Biochemical properties of inducible β -lactamases produced from Xanthomonas maltophilia . Antimicrob Agents Chemother 38:2143–2149 [CrossRef]
    [Google Scholar]
  15. Saino Y., Kobayashi F., Inoue M., Mitsuhashi S. 1982; Purification and properties of inducible penicillin β -lactamase isolated from Pseudomonas maltophilia . Antimicrob Agents Chemother 22:564–570 [CrossRef]
    [Google Scholar]
  16. Saino Y., Inoue M., Mitsuhashi S. 1984; Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873. Antimicrob Agents Chemother 25:362–365 [CrossRef]
    [Google Scholar]
  17. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626 [CrossRef]
    [Google Scholar]
  18. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa . Gene 158:15–22 [CrossRef]
    [Google Scholar]
  19. Walsh T. R., MacGowen A. P., Bennett P. M. 1997; Sequence analysis and enzyme kinetics of the L2 β -lactamase from Stenotrophomonas maltophilia . Antimicrob Agents Chemother 41:1460–1464
    [Google Scholar]
  20. Whitby P. W., Carter K. B., Burns J. L., Royall J. A., Lipuma J. J., Stull T. L. 2000; Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. J Clin Microbiol 38:4305–4309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000380-0
Loading
/content/journal/jmm/10.1099/jmm.0.000380-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error