1887

Abstract

The modified carbapenem inactivation method (mCIM) is a simple phenotypic screening method for detecting carbapenemase production by Enterobacteriaceae and Pseudomonas aeruginosa . We recently developed another modified carbapenem inactivation method (CIMTris), in which carbapenemase is extracted from bacteria with Tris-HCl buffer, to detect carbapenemase production by Acinetobacter and Pseudomonas species. This study describes an improved carbapenem inactivation method, CIMTrisII, for detecting carbapenemase production by Gram-negative pathogens, including Enterobacteriaceae , Acinetobacter and Pseudomonas species. CIMTrisII was different from CIMTris in the concentration of Meropenem disks (5-µg MEM disks vs. 10-µg MEM disks), the inoculum volume of the bacteria (a 5-µl loopful vs. a 10 µl loopful) and the incubation time (1 vs. 2 h). CIMTrisII showed an overall sensitivity of 99.3 % and an overall specificity of 95.0 % for tested isolates. In comparison, CIMTris showed a sensitivity of 96.1 % and a specificity of 96.3 %, and mCIM showed a sensitivity of 67.1 % and a specificity of 100 %. CIMTrisII is thus deemed useful for detecting carbapenemase production by Gram-negative pathogens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000888
2018-12-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/2/124.html?itemId=/content/journal/jmm/10.1099/jmm.0.000888&mimeType=html&fmt=ahah

References

  1. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568–585 [View Article][PubMed]
    [Google Scholar]
  2. Gniadek TJ, Carroll KC, Simner PJ. Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol 2016; 54:1700–1710 [View Article][PubMed]
    [Google Scholar]
  3. Schwaber MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA 2008; 300:2911–2913 [View Article][PubMed]
    [Google Scholar]
  4. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458 [View Article][PubMed]
    [Google Scholar]
  5. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 2015; 10:e0123690 [View Article][PubMed]
    [Google Scholar]
  6. Aktaş E, Malkoçoğlu G, Otlu B, Çopur Çiçek A, Külah C et al. Evaluation of the carbapenem inactivation method for detection of carbapenemase-producing gram-negative bacteria in comparison with the RAPIDEC CARBA NP. Microb Drug Resist 2017; 23:457–461 [View Article][PubMed]
    [Google Scholar]
  7. Yamada K, Kashiwa M, Arai K, Nagano N, Saito R. Comparison of the Modified-Hodge test, Carba NP test, and carbapenem inactivation method as screening methods for carbapenemase-producing Enterobacteriaceae . J Microbiol Methods 2016; 128:48–51 [View Article][PubMed]
    [Google Scholar]
  8. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae . J Clin Microbiol 2017; 55:2321–2333 [View Article][PubMed]
    [Google Scholar]
  9. Tamma PD, Opene BN, Gluck A, Chambers KK, Carroll KC et al. Comparison of 11 Phenotypic Assays for Accurate Detection of Carbapenemase-Producing Enterobacteriaceae . J Clin Microbiol 2017; 55:1046–1055 [View Article][PubMed]
    [Google Scholar]
  10. Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC et al. Carbapenemase detection amongst carbapenem-resistant glucose nonfermenting Gram-negative bacilli. J Clin Microbiol pii: JCM 201700775-17
    [Google Scholar]
  11. Muntean MM, Muntean AA, Gauthier L, Creton E, Cotellon G et al. Evaluation of the rapid carbapenem inactivation method (rCIM): a phenotypic screening test for carbapenemase-producing Enterobacteriaceae . J Antimicrob Chemother 2018; 73:900–908 [View Article][PubMed]
    [Google Scholar]
  12. Caméléna F, Cointe A, Mathy V, Hobson C, Doit C et al. Within-a-day detection and rapid characterization of carbapenemase by use of a new carbapenem inactivation method-based test, CIMplus. J Clin Microbiol 2018; 27:e00137-18 [View Article][PubMed]
    [Google Scholar]
  13. Liu M, Song Q, Wu L, Li M, Chen Z et al. Triton X-100 and increased volume of test bacteria in the carbapenem inactivation method enhanced the detection of carbapenemase-producing Acinetobacter baumannii complex isolates. J Clin Microbiol 2018; 56:1–4 [View Article][PubMed]
    [Google Scholar]
  14. Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M et al. A modified carbapenem inactivation method, cimtris, for carbapenemase production in Acinetobacter and Pseudomonas species. J Clin Microbiol 2017; 55:3405–3410 [View Article][PubMed]
    [Google Scholar]
  15. Sekiguchi J, Morita K, Kitao T, Watanabe N, Okazaki M et al. KHM-1, a novel plasmid-mediated metallo-beta-lactamase from a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother 2008; 52:4194–4197 [View Article][PubMed]
    [Google Scholar]
  16. Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae . PLoS One 2013; 8:e66358 [View Article][PubMed]
    [Google Scholar]
  17. Tada T, Uechi K, Nakasone I, Miyazato Z, Shinzato T et al. A hemin auxotrophic Enterobacter cloacae clinical isolate with increased resistance to carbapenems and aminoglycosides. J Med Microbiol 2018; 67:29–32 [View Article][PubMed]
    [Google Scholar]
  18. Shrestha B, Tada T, Shimada K, Shrestha S, Ohara H et al. Emergence of various NDM-Type-Metallo-β-Lactamase-producing Escherichia coli clinical isolates in Nepal. Antimicrob Agents Chemother 2017; 61:e0142517 [View Article][PubMed]
    [Google Scholar]
  19. Tada T, Miyoshi-Akiyama T, Dahal RK, Sah MK, Ohara H et al. NDM-1 Metallo-β-Lactamase and ArmA 16S rRNA methylase producing Providencia rettgeri clinical isolates in Nepal. BMC Infect Dis 2014; 14:56 [View Article][PubMed]
    [Google Scholar]
  20. Shrestha S, Tada T, Miyoshi-Akiyama T, Ohara H, Shimada K et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage. Int J Antimicrob Agents 2015; 46:526–531 [View Article][PubMed]
    [Google Scholar]
  21. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. Dissemination of 16S rRNA methylase ArmA-producing acinetobacter baumannii and emergence of OXA-72 carbapenemase coproducers in Japan. Antimicrob Agents Chemother 2014; 58:2916–2920 [View Article][PubMed]
    [Google Scholar]
  22. Tada T, Shimada K, Satou K, Hirano T, Pokhrel BM et al. Metallo-β-lactamases (DIM-1, NDM-1, VIM-2) and a 16S rRNA methyltransferase (RmtB4, RmtF2) producing Pseudomonas aeruginosa in Nepal. Antimicrob Agents Chemother 2017AAC.00694-17
    [Google Scholar]
  23. Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Kasai A, Mizuguchi Y et al. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J Clin Microbiol 2007; 45:979–989 [View Article][PubMed]
    [Google Scholar]
  24. Tada T, Miyoshi-Akiyama T, Shimada K, Shiroma A, Nakano K et al. A carbapenem-resistant pseudomonas aeruginosa isolate harboring two copies of blaIMP-34 encoding a Metallo-β-Lactamase. PLoS One 2016; 11:e0149385 [View Article][PubMed]
    [Google Scholar]
  25. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. IMP-43 and IMP-44 metallo-β-lactamases with increased carbapenemase activities in multidrug-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57:4427–4432 [View Article][PubMed]
    [Google Scholar]
  26. Tada T, Nhung PH, Miyoshi-Akiyama T, Shimada K, Tsuchiya M et al. Multidrug-resistant sequence Type 235 Pseudomonas aeruginosa clinical isolates producing IMP-26 with increased carbapenem-hydrolyzing activities in vietnam. Antimicrob Agents Chemother 2016; 60:6853–6858 [View Article][PubMed]
    [Google Scholar]
  27. Tada T, Nhung PH, Miyoshi-Akiyama T, Shimada K, Phuong DM et al. IMP-51, a novel IMP-type metallo-β-lactamase with increased doripenem- and meropenem-hydrolyzing activities, in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 2015; 59:7090–7093 [View Article][PubMed]
    [Google Scholar]
  28. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006; 12:826–836 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000888
Loading
/content/journal/jmm/10.1099/jmm.0.000888
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error