1887

Abstract

The susceptibility to triclosan of 732 clinical isolates obtained from 25 hospitals in 16 cities in China from December 2004 to December 2005 was screened by using an agar dilution method. Triclosan MICs ranged between 0.015 and 16 mg l, and the MIC was 0.5 mg l, lower than the actual in-use concentration of triclosan. Twenty triclosan-resistant isolates (MICs ≥1 mg l) were characterized by antibiotic susceptibility, clonal relatedness, mutation, expression, and efflux pump phenotype and expression to elucidate the resistance mechanism of to triclosan. The resistance rates of triclosan-resistant isolates to imipenem, levofloxacin, amikacin and tetracycline were higher than those of triclosan-sensitive isolates. Triclosan resistance was artificially classified as low level (MICs 1–2 mg l) or high level (MICs ≥4 mg l). High-level triclosan resistance could be explained by a Gly95Ser mutation of FabI, whilst wild-type was observed to be overexpressed in low-level resistant isolates. Active efflux did not appear to be a major reason for acquired triclosan resistance, but acquisition of resistance appeared to be dependent on a background of intrinsic triclosan efflux.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008524-0
2009-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/8/1086.html?itemId=/content/journal/jmm/10.1099/jmm.0.008524-0&mimeType=html&fmt=ahah

References

  1. Bamber A. I., Neal T. J. 1999; An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive Staphylococcus aureus . J Hosp Infect 41:107–109 [CrossRef]
    [Google Scholar]
  2. Bergler H., Hogenauer G., Turnowsky F. 1992; Sequences of the envM gene and of two mutated alleles in Escherichia coli . J Gen Microbiol 138:2093–2100 [CrossRef]
    [Google Scholar]
  3. Chuanchuen R., Beinlich K., Hoang T. T., Becher A., Karkhoff-Schweizer R. R., Schweizer H. P. 2001; Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432 [CrossRef]
    [Google Scholar]
  4. Damier-Piolle L., Magnet S., Brémont S., Lambert T., Courvalin P. 2008; AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii . Antimicrob Agents Chemother 52:557–562 [CrossRef]
    [Google Scholar]
  5. Fan F., Yan K., Wallis N. G., Reed S., Moore T. D., Rittenhouse S. F., DeWolf W. E., Huang J., McDevitt D. other authors 2002; Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus . Antimicrob Agents Chemother 46:3343–3347 [CrossRef]
    [Google Scholar]
  6. Fournier P. E., Vallenet D., Barbe V., Audic S., Ogata H., Poirel L., Richet H., Robert C., Mangenot S., other authors Jr. 2006; Comparative genomics of multidrug resistance in Acinetobacter baumannii . PLoS Genet 2:e7 [CrossRef]
    [Google Scholar]
  7. Heath R. J., Rubin J. R., Holland D. R., Zhang E., Snow M. E., Rock C. O. 1999; Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114 [CrossRef]
    [Google Scholar]
  8. Hoang T. T., Schweizer H. P. 1999; Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497
    [Google Scholar]
  9. Magnet S., Courvalin P., Lambert T. 2001; Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380 [CrossRef]
    [Google Scholar]
  10. Marchand I., Damier-Piolle L., Courvalin P., Lambert T. 2004; Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298–3304 [CrossRef]
    [Google Scholar]
  11. McMurry L. M., Oethinger M., Levy S. B. 1998a; Overexpression of marA , soxS , or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli . FEMS Microbiol Lett 166:305–309 [CrossRef]
    [Google Scholar]
  12. McMurry L. M., Oethinger M., Levy S. B. 1998b; Triclosan targets lipid synthesis. Nature 394:531–532 [CrossRef]
    [Google Scholar]
  13. Mima T., Joshi S., Gomez-Escalada M., Schweizer H. P. 2007; Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609 [CrossRef]
    [Google Scholar]
  14. Pannek S., Higgins P. G., Steinke P., Jonas D., Akova M., Bohnert J. A., Seifert H., Kern W. V. 2006; Multidrug efflux inhibition in Acinetobacter baumannii : comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine- β -naphthylamide. J Antimicrob Chemother 57:970–974 [CrossRef]
    [Google Scholar]
  15. Peleg A. Y., Adams J., Paterson D. L. 2007; Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii . Antimicrob Agents Chemother 51:2065–2069 [CrossRef]
    [Google Scholar]
  16. Peleg A. Y., Seifert H., Paterson D. L. 2008; Acinetobacter baumannii : emergence of a successful pathogen. Clin Microbiol Rev 21:538–582 [CrossRef]
    [Google Scholar]
  17. Ribera A., Ruiz J., Jiminez de Anta M. T., Vila J. 2002; Effect of an efflux pump inhibitor on the MIC of nalidixic acid for Acinetobacter baumannii and Stenotrophomonas maltophilia clinical isolates. J Antimicrob Chemother 49:697–698 [CrossRef]
    [Google Scholar]
  18. Seifert H., Gerner-Smidt P. 1995; Comparison of ribotyping and pulsed-field gel electrophoresis for molecular typing of Acinetobacter isolates. J Clin Microbiol 33:1402–1407
    [Google Scholar]
  19. Su X. Z., Chen J., Mizushima T., Kuroda T., Tsuchiya T. 2005; AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49:4362–4364 [CrossRef]
    [Google Scholar]
  20. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  21. Turton J. F., Woodford N., Glover J., Yarde S., Kaufmann M. E., Pitt T. L. 2006; Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44:2974–2976 [CrossRef]
    [Google Scholar]
  22. Webber M. A., Randall L. P., Cooles S., Woodward M. J., Piddock L. J. 2008; Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62:83–91 [CrossRef]
    [Google Scholar]
  23. Yazdankhah S. P., Scheie A. A., Hoiby E. A., Lunestad B. T., Heir E., Fotland T. O., Naterstad K., Kruse H. 2006; Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008524-0
Loading
/content/journal/jmm/10.1099/jmm.0.008524-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error