1887

Abstract

Inhalational anthrax is the most severe form of anthrax. It has been shown in small-animal and non-human primate models that relatively large pools of ungerminated spores can remain within the alveolar spaces for days to weeks post-inhalation or until transported to areas more favourable for germination and bacillary outgrowth. In this study, spores of the Ames strain that were exposed to germination-inducing media prior to intranasal delivery were significantly less infectious than spores delivered in either water or germination-inhibitory medium. The effect of manipulating the germination potential of these spores within the lungs of infected mice by exogenous germination-altering media was examined. The data suggested that neither inducing germination nor inhibiting germination of spores within the lungs protected mice from the ensuing infection. Germination-altering strategies could, instead, significantly increase the severity of disease in a mouse model of inhalational anthrax when implemented . It was shown that germination-altering strategies, in this study, were not beneficial to the infected host and are impractical as countermeasures.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008656-0
2009-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/6/816.html?itemId=/content/journal/jmm/10.1099/jmm.0.008656-0&mimeType=html&fmt=ahah

References

  1. Akoachere M., Squires R. C., Nour A. M., Angelov L., Brojatsch J., Abel-Santos E. 2007; Identification of an in vivo inhibitor of Bacillus anthracis spore germination. J Biol Chem 282:12112–12118 [CrossRef]
    [Google Scholar]
  2. Altboum Z., Gozes Y., Barnea A., Pass A., White M., Kobiler D. 2002; Postexposure prophylaxis against anthrax: evaluation of various treatment regimens in intranasally infected guinea pigs. Infect Immun 70:6231–6241 [CrossRef]
    [Google Scholar]
  3. Alvarez Z., Abel-Santos E. 2007; Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax and Clostridium difficile -associated disease. Expert Rev Anti Infect Ther 5:783–792 [CrossRef]
    [Google Scholar]
  4. Banks D. J., Barnajian M., Maldonado-Arocho F. J., Sanchez A. M., Bradley K. A. 2005; Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge. Cell Microbiol 7:1173–1185 [CrossRef]
    [Google Scholar]
  5. Barnes J. M. 1947; The development of anthrax following the administration of spores by inhalation. Br J Exp Pathol 28:385–393
    [Google Scholar]
  6. Bozue J. A., Parthasarathy N., Phillips L. R., Cote C. K., Fellows P. F., Mendelson I., Shafferman A., Friedlander A. M. 2005; Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog 38:1–12 [CrossRef]
    [Google Scholar]
  7. Bozue J., Cote C. K., Moody K. L., Welkos S. L. 2007a; Fully virulent Bacillus anthracis does not require the immunodominant protein, BclA, for pathogenesis. Infect Immun 75:508–511 [CrossRef]
    [Google Scholar]
  8. Bozue J., Moody K. L., Cote C. K., Stiles B. G., Friedlander A. M., Welkos S. L., Hale M. L. 2007b; Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 75:4498–4505 [CrossRef]
    [Google Scholar]
  9. Cleret A., Quesnel-Hellmann A., Vallon-Eberhard A., Verrier B., Jung S., Vidal D., Mathieu J., Tournier J. N. 2007; Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J Immunol 178:7994–8001 [CrossRef]
    [Google Scholar]
  10. Cote C. K., Rossi C. A., Kang A. S., Morrow P. R., Lee J. S., Welkos S. L. 2005; The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 38:209–225 [CrossRef]
    [Google Scholar]
  11. Cote C. K., van Rooijen N., Welkos S. L. 2006; The roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores using a mouse model of infection. Infect Immun 74:469–480 [CrossRef]
    [Google Scholar]
  12. Cote C. K., DiMezzo T. L., Banks D. J., France B., Bradley K. A., Welkos S. L. 2008; Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microbes Infect 10:613–619 [CrossRef]
    [Google Scholar]
  13. Cown W. B., Kethley T. W., Fincher E. L. 1957; The critical-orifice liquid impinger as a sampler for bacterial aerosols. Appl Microbiol 5:119–124
    [Google Scholar]
  14. Driks A. 2002; Maximum shields: the armor plating of the bacterial spore. Trends Microbiol 10:251–254 [CrossRef]
    [Google Scholar]
  15. Drusano G. L., Okusanya O. O., Okusanya A., Van Scoy B., Brown D. L., Kulawy R., Sorgel F., Heine H. S., Louie A. 2008; Is 60 days of ciprofloxacin administration necessary for post-exposure prophylaxis for Bacillus anthracis ?. Antimicrob Agents Chemother 52:3973–3979 [CrossRef]
    [Google Scholar]
  16. Drysdale M., Heninger S., Hutt J., Chen Y., Lyons C. R., Koehler T. M. 2005; Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24:221–227 [CrossRef]
    [Google Scholar]
  17. Friedlander A. M. 2000; Anthrax: clinical features, pathogenesis, and potential biological warfare threat. Curr Clin Top Infect Dis 20:335–349
    [Google Scholar]
  18. Friedlander A. M., Welkos S. L., Pitt M. L., Ezzell J. W., Worsham P. L., Rose K. J., Ivins B. E., Lowe J. R., Howe G. B. & other authors; 1993; Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 167:1239–1243 [CrossRef]
    [Google Scholar]
  19. Giorno R., Bozue J., Cote C., Wenzel T., Moody K. S., Mallozzi M., Ryan M., Wang R., Zielke R. other authors 2007; Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189:691–705 [CrossRef]
    [Google Scholar]
  20. Glomski I. J., Piris-Gimenez A., Huerre M., Mock M., Goossens P. L. 2007; Primary involvement of pharynx and Peyer's patch in inhalational and intestinal anthrax. PLoS Pathog 3:e76 [CrossRef]
    [Google Scholar]
  21. Guidi-Rontani C., Weber-Levy M., Labruyere E., Mock M. 1999; Germination of Bacillus anthracis spores within alveolar macrophages. Mol Microbiol 31:9–17 [CrossRef]
    [Google Scholar]
  22. Gut I. M., Prouty A. M., Ballard J. D., van der Donk W. A., Blanke S. R. 2008; Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52:4281–4288 [CrossRef]
    [Google Scholar]
  23. Henderson D. W., Peacock S., Belton F. C. 1956; Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J Hyg (Lond 54:28–36 [CrossRef]
    [Google Scholar]
  24. Heninger S., Drysdale M., Lovchik J., Hutt J., Lipscomb M. F., Koehler T. M., Lyons C. R. 2006; Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect Immun 74:6067–6074 [CrossRef]
    [Google Scholar]
  25. Hu H., Sa Q., Koehler T. M., Aronson A. I., Zhou D. 2006; Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 8:1634–1642 [CrossRef]
    [Google Scholar]
  26. Ireland J. A. W., Hanna P. C. 2002; Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis ΔSterne endospores: gerS mediates responses to aromatic ring structures. J Bacteriol 184:1296–1303 [CrossRef]
    [Google Scholar]
  27. Kang T. J., Fenton M. J., Weiner M. A., Hibbs S., Basu S., Baillie L., Cross A. S. 2005; Murine macrophages kill the vegetative form of Bacillus anthracis . Infect Immun 73:7495–7501 [CrossRef]
    [Google Scholar]
  28. Leighton T. J., Doi R. H. 1971; The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis . J Biol Chem 246:3189–3195
    [Google Scholar]
  29. Little S. F., Knudson G. B. 1986; Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect Immun 52:509–512
    [Google Scholar]
  30. Loving C. L., Kennett M., Lee G. M., Grippe V. K., Merkel T. J. 2007; Murine aerosol challenge model of anthrax. Infect Immun 75:2689–2698 [CrossRef]
    [Google Scholar]
  31. May K. R. 1973; The collision nebulizer: description, performance and applications. J Aerosol Sci 4:235–243 [CrossRef]
    [Google Scholar]
  32. McKevitt M. T., Bryant K. M., Shakir S. M., Larabee J. L., Blanke S. R., Lovchik J., Lyons C. R., Ballard J. D. 2007; Effects of endogenous d-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75:5726–5734 [CrossRef]
    [Google Scholar]
  33. Mock M., Fouet A. 2001; Anthrax. Annu Rev Microbiol 55:647–671 [CrossRef]
    [Google Scholar]
  34. Moir A., Corfe B. M., Behravan J. 2002; Spore germination. Cell Mol Life Sci 59:403–409 [CrossRef]
    [Google Scholar]
  35. Oliva C. R., Swiecki M., Griguer E., Lisanby M. W., Bullard D. C., Turnbough C. L., Kearney J. F. 2008; The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci U S A 105:1261–1266 [CrossRef]
    [Google Scholar]
  36. Pickering A. K., Osorio M., Lee G. M., Grippe V. K., Bray M., Merkel T. J. 2004; Cytokine response to infection with Bacillus anthracis spores. Infect Immun 72:6382–6389 [CrossRef]
    [Google Scholar]
  37. Ross J. M. 1957; The pathogenesis of anthrax following the administration of spores by the respiratory route. J Pathol Bacteriol 73:485–494 [CrossRef]
    [Google Scholar]
  38. Russell B. H., Liu Q., Jenkins S. A., Tuvim M. J., Xu Y. 2008a; In vivo demonstration and quantification of intracellular Bacillus anthracis in lung epithelial cells. Infect Immun 76:3975–3983 [CrossRef]
    [Google Scholar]
  39. Russell B. H., Vasan R., Keene D. R., Koehler T. M., Xu Y. 2008b; Potential dissemination of Bacillus anthracis utilizing human lung epithelial cells. Cell Microbiol 10:945–957 [CrossRef]
    [Google Scholar]
  40. Sanz P., Teel L. D., Alem F., Carvalho H. M., Darnell S. C., O'Brien A. D. 2008; Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect Immun 76:1036–1047 [CrossRef]
    [Google Scholar]
  41. Warfel J. M., Steele A. D., D'Agnillo F. 2005; Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 166:1871–1881 [CrossRef]
    [Google Scholar]
  42. Welkos S. L., Keener T. J., Gibbs P. H. 1986; Differences in susceptibility of inbred mice to Bacillus anthracis . Infect Immun 51:795–800
    [Google Scholar]
  43. Welkos S., Friedlander A., Weeks S., Little S., Mendelson I. 2002; In-vitro characterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J Med Microbiol 51:821–831
    [Google Scholar]
  44. Welkos S. L., Cote C. K., Rea K. M., Gibbs P. H. 2004; A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J Microbiol Methods 56:253–265 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008656-0
Loading
/content/journal/jmm/10.1099/jmm.0.008656-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error