1887

Abstract

biofilm causes device-related meningitis in neurosurgical patients. This study assessed the contribution of polysaccharide and protein to the development of a strong biofilm-positive phenotype in four isolates associated with probable device-related meningitis, under varying environmental conditions. RT-PCR analysis of the intercellular adhesion operon () and assessment of polysaccharide intercellular adhesin (PIA) production indicated a correlation between increased transcription and PIA production in isolates grown in medium with 4 % ethanol and 4 % NaCl. Treatment of biofilm with sodium metaperiodate caused dispersion of adhered cells ( <0.0001), indicating involvement of PIA. Transcriptional levels of protein factors revealed that transcription levels were similar in all isolates, whilst levels were variable, with induction being seen in two isolates following growth in the presence of alcohol or salt. Transcription of did not influence protein expression and transcription varied among the strains. Although transcription was induced, the treatment of biofilm with proteinase K did not always disperse the biofilm. Our data suggest that, among the three isolates clinically associated with meningitis that were studied, PIA contributed to the strong biofilm-positive phenotype, whereas protein factors appeared to have a secondary role.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009209-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/855.html?itemId=/content/journal/jmm/10.1099/jmm.0.009209-0&mimeType=html&fmt=ahah

References

  1. Arciola C. R., Campoccia D., Gamberini S., Donati M. E., Baldassarri L., Montanaro L. 2003; Occurrence of ica genes for slime synthesis in a collection of Staphylococcus epidermidis strains from orthopedic prosthesis infections. Acta Orthop Scand 74:617–621 [CrossRef]
    [Google Scholar]
  2. Banner M. A., Cunniffe J. G., Macintosh R. L., Foster T. J., Rohde H., Mack D., Hoyes E., Derrick J., Upton M., Handley P. S. 2007; Localised tufts of fimbrils on Staphylococcus epidermidis NCTC 11047 are comprised of accumulation-associated protein. J Bacteriol 189:2793–2804 [CrossRef]
    [Google Scholar]
  3. Bateman A., Holden M. T., Yeats C. 2005; The G5 domain: a potential N -acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics 21:1301–1303 [CrossRef]
    [Google Scholar]
  4. Batzilla C. F., Rachid S., Englemann S., Hecker M., Hacker J., Ziebuhr W. 2006; Impact of the accessory gene regulatory system (Agric) on extracellular proteins, codY expression and amino acid metabolism in Staphylococcus epidermidis . Proteomics 6:3602–3613 [CrossRef]
    [Google Scholar]
  5. Bayston R., Penny S. R. 1972; Excessive production of mucoid substance in staphylococcus SIIA: a possible factor in the colonisation of Holter shunts. Dev Med Child Neurol Suppl 27:25–28
    [Google Scholar]
  6. Christensen G. D., Bisno A. L., Parisi J. T., Mclaughlin B., Hester M. G., Luther R. W. 1985; Nosocomial septicaemia due to multiply antibiotic-resistant Staphylococcus epidermidis . J Clin Microbiol 22:996–1006
    [Google Scholar]
  7. Christensen G. D., Barker L. P., Mawhiney T. P., Baddour L. M., Simpson W. A. 1990; Identification of an antigenic marker of slime production in Staphylococcus epidermidis . Infect Immun 58:2906–2911
    [Google Scholar]
  8. Conlon K. M., Humphreys H., O'Gara J. P. 2002a; icaR encodes a transcriptional repressor involved in the environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis . J Bacteriol 184:4400–4408 [CrossRef]
    [Google Scholar]
  9. Conlon K. M., Humphreys H., O'Gara J. P. 2002b; Regulation of icaR gene expression in Staphylococcus epidermidis . FEMS Microbiol Lett 216:171–177 [CrossRef]
    [Google Scholar]
  10. Conrady D. G., Brescia C. C., Horii K., Weiss A. A., Hassett D. J., Herr A. B. 2008; A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 105:19456–19461 [CrossRef]
    [Google Scholar]
  11. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. 1999; The intercellular adhesin ( ica ) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433
    [Google Scholar]
  12. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penades J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  13. Cucarella C., Tormo M. A., Ubeda C., Trotonda M. P., Monzón M., Peris C., Amorena B., Lasa I., Penadés J. R. 2004; Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus . Infect Immun 72:2177–2185 [CrossRef]
    [Google Scholar]
  14. Diaz-Mitoma F., Harding G. K. M., Hoban D. J., Roberts R. S., Low D. E. 1987; Clinical significance of a test for slime production in ventriculoperitoneal shunt infections caused by coagulase-negative staphylococci. J Infect Dis 156:555–559 [CrossRef]
    [Google Scholar]
  15. Fitzpatrick F., Humphreys H., O'Gara J. P. 2005; The genetics of staphylococcal biofilm formation: will a greater understanding of pathogenesis lead to better management of device-related infection?. Clin Microbiol Infect 11:967–973 [CrossRef]
    [Google Scholar]
  16. Goerke C., Campana S., Baring M. G., Döring G., Botzenhart K., Wolz C. 2000; Direct quantitative transcript analysis of the agr region of Staphylococcus aureus during human infection in comparison to the expression profile in vitro . Infect Immun 68:1304–1311 [CrossRef]
    [Google Scholar]
  17. Handke L. D., Conlon K. M., Slater S. R., Elbaruni S., Fitzpatrick F., Humphreys H., Giles W. P., Rupp M. E., Fey P. D., O'Gara J. P. 2004; Genetic and phenotypic analysis of biofilm phenotypic variation in multiple Staphylococcus epidermidis isolates. J Med Microbiol 53:367–374 [CrossRef]
    [Google Scholar]
  18. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Gotz F. 1996; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20:1083–1091 [CrossRef]
    [Google Scholar]
  19. Heilmann C., Hussain M., Peters G., Gotz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024 [CrossRef]
    [Google Scholar]
  20. Hennig S., Nyunt Wai S., Ziebuhr W. 2007; Spontaneous switch to PIA-independent biofilm formation in an ica -positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297:117–122 [CrossRef]
    [Google Scholar]
  21. Hussain M., Herrmann M., von Eiff C., Perdreau-Remington F., Peters G. 1997; A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524
    [Google Scholar]
  22. Izano E. A., Amarante M. A., Kher W. B., Kaplan J. B. 2008; Differential roles of poly- N -acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476 [CrossRef]
    [Google Scholar]
  23. Kockro R. A., Hampl J. A., Jansen B., Peters G., Scheihing M., Giacomelli R., Kunze S., Aschoff A. 2000; Use of scanning electron microscopy to investigate the prophylactic efficacy of rifampicin-impregnated CSF shunt catheters. J Med Microbiol 49:441–450
    [Google Scholar]
  24. Kogan G., Sadovskaya I., Chaignon P., Chokr A., Jabbouri S. 2006; Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesion. FEMS Microbiol Lett 255:11–16 [CrossRef]
    [Google Scholar]
  25. Lindsay D., von Holy A. 2006; Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325 [CrossRef]
    [Google Scholar]
  26. Mack D., Siemssen N., Laufs R. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis : evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057
    [Google Scholar]
  27. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. 1996; The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β -1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183
    [Google Scholar]
  28. Maira-Litran T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B. 2002; Immunological properties of staphylococcal poly- N -acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440 [CrossRef]
    [Google Scholar]
  29. McKenney D., Hubner J., Muller E., Wang Y., Goldmann D. A., Pier G. B. 1998; The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720
    [Google Scholar]
  30. O'Neill E., Pozzi C., Houston P., Smyth D., Humphreys H., Robinson D. A., O'Gara J. P. 2007; Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 45:1379–1388 [CrossRef]
    [Google Scholar]
  31. O'Neill E., Pozzi C., Houston P., Humphreys H., Robinson D. A., Loughman A., Foster T. J., O'Gara J. P. 2008; A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850 [CrossRef]
    [Google Scholar]
  32. Peters G., Schumacher-Perdreau F., Jansen B., Bey M., Pulverer B. 1987; Biology of Staphylococcus epidermidis extracellular slime. Zentralbl Bakteriol Mikrobiol Hyg [A] 1 (Suppl. 16):15–32
    [Google Scholar]
  33. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K. M., Heilmann C., Herrmann M., Mack D. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895 [CrossRef]
    [Google Scholar]
  34. Rupp M. E., Archer G. L. 1992; Hemagglutination and adherence to plastic by Staphylococcus epidermidis . Infect Immun 60:4322–4327
    [Google Scholar]
  35. Sadovskaya I., Vinogradov E., Flahaut S., Kogan G., Jabbouri S. 2005; Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73:3007–3017 [CrossRef]
    [Google Scholar]
  36. Stevens N. T., Tharmabala M., Dillane T., Greene C. M., O'Gara J. P., Humphreys H. 2008; Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis. Clin Microbiol Infect 14:719–722 [CrossRef]
    [Google Scholar]
  37. Tojo M., Yamashita N., Goldmann D. A., Pier G. B. 1988; Isolation and characterization of capsular polysaccharide adhesion from Staphylococcus epidermidis . J Infect Dis 157:713–722 [CrossRef]
    [Google Scholar]
  38. Tormo M. A., Knecht E., Götz F., Lasa I., Penadés J. R. 2005; Bap-dependent biofilm formation by pathogenic species of Staphylococcus : evidence of horizontal gene transfer. Microbiology 151:2465–2475 [CrossRef]
    [Google Scholar]
  39. Veenstra G. J., Cremers F. F., van Dijk H., Fleer A. 1996; Ultrastructural organisation and regulation of biomaterial adhesin of Staphylococcus epidermidis . J Bacteriol 178:537–541
    [Google Scholar]
  40. Ziebuhr W., Heilmann C., Gotz F., Meyer P., Wilms K., Straube E., Hacker J. 1997; Detection of intercellular adhesion gene cluster ( ica ) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009209-0
Loading
/content/journal/jmm/10.1099/jmm.0.009209-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error