1887

Abstract

Carvacrol is an important component of essential oils and recently has attracted much attention as a result of its biological properties, such as a wide spectrum of antimicrobial activity. The aim of this study was to evaluate the effect of carvacrol in liquid and vapour phase on preformed biofilms of and by determining biofilm biomass and cultivable cell numbers, and by using epifluorescence and scanning electron microscopy. Carvacrol was able to reduce biofilm biomass and cell viability more effectively when used with liquid contact rather than with vapour phase. The efficacy of treatment with carvacrol vapour was found to be dependent on exposure time. The predominance of red fluorescence using a LIVE/DEAD Light Viability kit (Molecular Probes) and the partially destroyed biofilm architecture as determined by microscopy in treated samples provided evidence for the efficacy of carvacrol. The findings of this investigation suggest a potential application for carvacrol in the inactivation of staphylococcal biofilms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009274-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/6/791.html?itemId=/content/journal/jmm/10.1099/jmm.0.009274-0&mimeType=html&fmt=ahah

References

  1. Ben Arfa A., Combes S., Preziosi-Belloy L., Gontard N., Chalier P. 2006; Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154 [CrossRef]
    [Google Scholar]
  2. Burt S. A., Fledderman M. J., Haagsman H. P., van Knapen F., Veldhuizen E. J. A. 2007a; Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapour. Int J Food Microbiol 119:346–350 [CrossRef]
    [Google Scholar]
  3. Burt S. A., van der Zee R., Koets A. P., de Graaff A. M., van Knapen F., Gaastra W., Haagsman H. P., Veldhuizen E. J. A. 2007b; Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157 : H7. Appl Environ Microbiol 73:4484–4490 [CrossRef]
    [Google Scholar]
  4. Center for Food Safety and Applied Nutrition 2006 EAFUS: a Food Additive Database Washington, DC: US Food and Drug Administration, Center for Food Safety and Applied Nutrition;
    [Google Scholar]
  5. Chami F., Chami N., Tennis S., Trouillas J., Remmal A. 2004; Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. J Antimicrob Chemother 54:909–914 [CrossRef]
    [Google Scholar]
  6. Chami N., Bennis S., Chami F., Aboussekhra A., Remmal A. 2005; Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo . Oral Microbiol Immunol 20:106–111 [CrossRef]
    [Google Scholar]
  7. Commission of the European Communities 1999; Commission Decision of 23 February 1999 Adopting a Register of Flavouring Substances Used in or on Foodstuffs Drawn Up in Application of Regulation (EC) No. 2232–96 of the European Parliament and of the Council of 28 October 1996 (Notified under Number C(1999) 399) (Text with EEA Relevance) (1999/217/EC) . Official Journal of the European Communities L084: pp 1–137 Brussels, Belgium: Commission of the European Communities;
    [Google Scholar]
  8. Dorman H. J. D., Deans S. G. 2000; Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316 [CrossRef]
    [Google Scholar]
  9. Gill A. O., Holley R. A. 2006; Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int J Food Microbiol 111:170–174 [CrossRef]
    [Google Scholar]
  10. Griffin S. G., Wyllie S. G., Markham J. L., Leach D. 1999; The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragrance J 14:322–332 [CrossRef]
    [Google Scholar]
  11. Helander I. M., Alakomi H.-L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E. J., Gorris L. G. M., von Wright A. 1998; Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595 [CrossRef]
    [Google Scholar]
  12. Hoyle B. D., Costerton J. W. 1991; Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105
    [Google Scholar]
  13. Inouye S., Tsuruoka T., Watanabe M., Takeo K., Akao M., Nishiyama Y., Yamaguchi H. 2000; Inhibitory effect of essential oils on apical growth of Aspergillus fumigatus by vapour contact. Mycoses 43:17–23 [CrossRef]
    [Google Scholar]
  14. Inouye S., Takizawa T., Yamaguchi H. 2001a; Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47:565–573 [CrossRef]
    [Google Scholar]
  15. Inouye S., Uchida K., Yamaguchi H. 2001b; In-vitro and in-vivo anti- Trichophyton activity of essential oils by vapour contact. Mycoses 44:99–107 [CrossRef]
    [Google Scholar]
  16. Inouye S., Abe S., Yamaguchi H., Asakura M. 2003; Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int J Aromather 13:33–41 [CrossRef]
    [Google Scholar]
  17. Izano E. A., Amarante M. A., Kher W. B., Kaplan J. B. 2008; Differential roles of poly- N -acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476 [CrossRef]
    [Google Scholar]
  18. Jeong E. Y., Lim J. H., Kim H. G., Lee H. S. 2008; Acaricidal activity of Thymus vulgaris oil and its main components against Tyrophagus putrescentiae , a stored food mite. J Food Prot 71:351–355
    [Google Scholar]
  19. Knowles J., Roller S. 2001; Efficacy of chitosan, carvacrol and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel. J Food Prot 64:1542–1548
    [Google Scholar]
  20. Knowles J. R., Roller S., Murray D. B., Naidu A. S. 2005; Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71:797–803 [CrossRef]
    [Google Scholar]
  21. Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008; Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p -cymene. Bioresour Technol 99:8788–8795 [CrossRef]
    [Google Scholar]
  22. Kristinsson K. G., Magnusdottir A. B., Peterson H., Hermansson A. 2005; Effective treatment of experimental acute otitis media by application of volatile fluids into the ear canal. J Infect Dis 191:1876–1880 [CrossRef]
    [Google Scholar]
  23. Lambert R. J. W., Skandamis P. N., Coote P. J., Nychas G. J. E. 2001; A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462 [CrossRef]
    [Google Scholar]
  24. López P., Sanchez C., Batlle R., Nerín V. 2007; Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J Agric Food Chem 55:4348–4356 [CrossRef]
    [Google Scholar]
  25. Mah T.-F. C., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [CrossRef]
    [Google Scholar]
  26. Nostro A., Blanco A. R., Cannatelli M. A., Enea V., Flamini G., Morelli I., Sudano Roccaro A., Alonzo V. 2004; Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett 230:191–195 [CrossRef]
    [Google Scholar]
  27. Nostro A., Sudano Roccaro A., Bisignano G., Marino A., Cannatelli M. A., Pizzimenti F. C., Cioni P. L., Procopio F., Blanco A. R. 2007; Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523 [CrossRef]
    [Google Scholar]
  28. O'Gara J. P., Humphreys H. 2001; Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 50:582–587
    [Google Scholar]
  29. Perez-Conesa D., McLandsborough L., Weiss J. 2006; Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157 : H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Prot 69:2947–2954
    [Google Scholar]
  30. Ultee A., Gorris L. G., Smid E. J. 1998; Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus . J Appl Microbiol 85:211–218 [CrossRef]
    [Google Scholar]
  31. Ultee A., Kets E. P. W., Smid J. 1999; Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus . Appl Environ Microbiol 65:4606–4610
    [Google Scholar]
  32. Ultee A., Bennik M. H., Moezelaar R. 2002; The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus . Appl Environ Microbiol 68:1561–1568 [CrossRef]
    [Google Scholar]
  33. Veldhuizen E. J. A., Tjeerdsma-van Bokhoven J. L. M., Zweijtzer C., Burt S. A., Haagsman H. P. 2006; Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem 54:1874–1879 [CrossRef]
    [Google Scholar]
  34. Vuong C., Otto M. 2002; Staphylococcus epidermidis infections. Microbes Infect 4:481–489 [CrossRef]
    [Google Scholar]
  35. Weissinger W. R., McWatters K. H., Beuchat L. R. 2001; Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts. J Food Prot 64:442–450
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009274-0
Loading
/content/journal/jmm/10.1099/jmm.0.009274-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error