1887

Abstract

Standardization of human cytomegalovirus (CMV) PCR is highly recommended. As primer design is essential for PCR sensitivity, this study evaluated all published CMV primer pairs to identify the most sensitive for single-round real-time PCR. PubMed (1993–2004) was searched for original papers aimed at CMV PCR. Fifty-seven papers were identified revealing 82 different primer pairs. Of these, 17 primer sets were selected for empirical study, as they were either used in real-time PCR or were evaluated comparatively by conventional PCR. After optimizing the PCR conditions, these primer sets were evaluated by real-time PCR using a SYBR Green format. Analytical sensitivities were assessed by testing the reference standard CMV strain AD169. A search was performed to identify mismatches with published sequences. Additionally, 60 clinical samples were tested with the three primer sets showing highest analytical sensitivity and the best match to all CMV strains. Three primer sets located in the glycoprotein B () gene region were found to be the most sensitive using strain AD169. However, two of these showed a considerable number of mismatches with clinical isolates in a search. Instead, two other pairs from the lower matrix phosphoprotein () gene and DNA polymerase () gene showed reasonable sensitivity and no mismatches with clinical isolates. These three pairs were further tested with clinical samples, which indicated that the two primer sets from and were the most sensitive. Interestingly, the analytical sensitivity of the PCR was inversely correlated with the size of the PCR product. In conclusion, these two primer pairs are recommended for a standardized, highly sensitive, real-time PCR.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.010587-0
2009-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/878.html?itemId=/content/journal/jmm/10.1099/jmm.0.010587-0&mimeType=html&fmt=ahah

References

  1. Allen R. D., Pellett P. E., Stewart J. A., Koopmans M. 1995; Nonradioactive PCR-enzyme-linked immunosorbent assay method for detection of human cytomegalovirus DNA. J Clin Microbiol 33:725–728
    [Google Scholar]
  2. Bai X., Rogers B. B., Harkins P. C., Sommerauer J., Squires R., Rotondo K., Quan A., Dawson D. B., Scheuermann R. H. 2000; Predictive value of quantitative PCR-based viral burden analysis for eight human herpesviruses in pediatric solid organ transplant patients. J Mol Diagn 2:191–201 [CrossRef]
    [Google Scholar]
  3. Boeckh M., Huang M., Ferrenberg J., Stevens-Ayers T., Stensland L., Nichols W. G., Corey L. 2004; Optimization of quantitative detection of cytomegalovirus DNA in plasma by real-time PCR. J Clin Microbiol 42:1142–1148 [CrossRef]
    [Google Scholar]
  4. Boom R., Sol C. J., Schuurman T., Van Breda A., Weel J. F., Beld M., Ten Berge I. J., Wertheim-Van Dillen P. M., De Jong M. D. 2002; Human cytomegalovirus DNA in plasma and serum specimens of renal transplant recipients is highly fragmented. J Clin Microbiol 40:4105–4113 [CrossRef]
    [Google Scholar]
  5. Bustin S. A. 2005; Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5:493–498 [CrossRef]
    [Google Scholar]
  6. Caliendo A. M., St George K., Kao S. Y., Allega J., Tan B. H., LaFontaine R., Bui L., Rinaldo C. R. 2000; Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients. J Clin Microbiol 38:2122–2127
    [Google Scholar]
  7. Distefano A. L., Alonso A., Martin F., Pardon F. 2004; Human cytomegalovirus: detection of congenital and perinatal infection in Argentina. BMC Pediatr 4:11 [CrossRef]
    [Google Scholar]
  8. Drouet E., Colimon R., Michelson S., Fourcade N., Niveleau A., Ducerf C., Boibieux A., Chevallier M., Denoyel G. 1995; Monitoring levels of human cytomegalovirus DNA in blood after liver transplantation. J Clin Microbiol 33:389–394
    [Google Scholar]
  9. Exner M. M., Lewinski M. A. 2002; Sensitivity of multiplex real-time PCR reactions, using the LightCycler and the ABI PRISM 7700 Sequence Detection System, is dependent on the concentration of the DNA polymerase. Mol Cell Probes 16:351–357 [CrossRef]
    [Google Scholar]
  10. Gault E., Michel Y., Dehee A., Belabani C., Nicolas J. C., Garbarg-Chenon A. 2001; Quantification of human cytomegalovirus DNA by real-time PCR. J Clin Microbiol 39:772–775 [CrossRef]
    [Google Scholar]
  11. Gouarin S., Gault E., Vabret A., Cointe D., Rozenberg F., Grangeot-Keros L., Barjot P., Garbarg-Chenon A., Lebon P. other authors 2002; Real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples from mothers with primary infection. J Clin Microbiol 40:1767–1772 [CrossRef]
    [Google Scholar]
  12. Griscelli F., Barrois M., Chauvin S., Lastere S., Bellet D., Bourhis J. H. 2001; Quantification of human cytomegalovirus DNA in bone marrow transplant recipients by real-time PCR. J Clin Microbiol 39:4362–4369 [CrossRef]
    [Google Scholar]
  13. Habbal W., Monem F., Gärtner B. C. 2005; Errors in published sequences of human cytomegalovirus primers and probes: do we need more quality control?. J Clin Microbiol 43:5408–5409 [CrossRef]
    [Google Scholar]
  14. Hong K. M., Najjar H., Hawley M., Press R. D. 2004; Quantitative real-time PCR with automated sample preparation for diagnosis and monitoring of cytomegalovirus infection in bone marrow transplant patients. Clin Chem 50:846–856 [CrossRef]
    [Google Scholar]
  15. Ibrahim A. I., Obeid M. T., Jouma M. J., Moasis G. A., Al-Richane W. L., Kindermann I., Boehm M., Roemer K., Mueller-Lantzsch N. other authors 2005; Detection of herpes simplex virus, cytomegalovirus and Epstein–Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J Clin Virol 32:29–32 [CrossRef]
    [Google Scholar]
  16. Jones R. N., Neale M. L., Beattie B., Westmoreland D., Fox J. D. 2000; Development and application of a PCR-based method including an internal control for diagnosis of congenital cytomegalovirus infection. J Clin Microbiol 38:1–6
    [Google Scholar]
  17. Kearns A. M., Draper B., Wipat W., Turner A. J., Wheeler J., Freeman R., Harwood J., Gould F. K., Dark J. H. 2001; LightCycler-based quantitative PCR for detection of cytomegalovirus in blood, urine, and respiratory samples. J Clin Microbiol 39:2364–2365 [CrossRef]
    [Google Scholar]
  18. Machida U., Kami M., Fukui T., Kazuyama Y., Kinoshita M., Tanaka Y., Kanda Y., Ogawa S., Honda H. other authors 2000; Real-time automated PCR for early diagnosis and monitoring of cytomegalovirus infection after bone marrow transplantation. J Clin Microbiol 38:2536–2542
    [Google Scholar]
  19. Markoulatos P., Georgopoulou A., Siafakas N., Plakokefalos E., Tzanakaki G., Kourea-Kremastinou J. 2001; Laboratory diagnosis of common herpesvirus infections of the central nervous system by a multiplex PCR assay. J Clin Microbiol 39:4426–4432 [CrossRef]
    [Google Scholar]
  20. Mendez J. C., Espy M. J., Smith T. F., Wilson J. A., Paya C. V. 1998; Evaluation of PCR primers for early diagnosis of cytomegalovirus infection following liver transplantation. J Clin Microbiol 36:526–530
    [Google Scholar]
  21. Murphy E., Yu D., Grimwood J., Schmutz J., Dickson M., Jarvis M. A., Hahn G., Nelson J. A., Myers R. M. other authors 2003; Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100:14976–14981 [CrossRef]
    [Google Scholar]
  22. Pang X. L., Chui L., Fenton J., LeBlanc B., Preiksaitis J. K. 2003; Comparison of LightCycler-based PCR, COBAS amplicor CMV monitor, and pp65 antigenemia assays for quantitative measurement of cytomegalovirus viral load in peripheral blood specimens from patients after solid organ transplantation. J Clin Microbiol 41:3167–3174 [CrossRef]
    [Google Scholar]
  23. Piiparinen H., Höckerstedt K., Grönhagen-Riska C., Lautenschlager I. 2004; Comparison of two quantitative CMV PCR tests, Cobas Amplicor CMV Monitor and TaqMan assay, and pp65-antigenemia assay in the determination of viral loads from peripheral blood of organ transplant patients. J Clin Virol 30:258–266 [CrossRef]
    [Google Scholar]
  24. Razonable R. R., Brown R. A., Espy M. J., Rivero A., Kremers W., Wilson J., Groettum C., Smith T. F., Paya C. V. 2001; Comparative quantitation of cytomegalovirus (CMV) DNA in solid organ transplant recipients with CMV infection by using two high-throughput automated systems. J Clin Microbiol 39:4472–4476 [CrossRef]
    [Google Scholar]
  25. Razonable R. R., Paya C. V., Smith T. F. 2002; Role of the laboratory in diagnosis and management of cytomegalovirus infection in hematopoietic stem cell and solid-organ transplant recipients. J Clin Microbiol 40:746–752 [CrossRef]
    [Google Scholar]
  26. Sanchez J. L., Storch G. A. 2002; Multiplex, quantitative, real-time PCR assay for cytomegalovirus and human DNA. J Clin Microbiol 40:2381–2386 [CrossRef]
    [Google Scholar]
  27. Sekhon H. S., Press R. D., Schmidt W. A., Hawley M., Rader A. 2004; Identification of cytomegalovirus in a liquid-based gynecologic sample using morphology, immunohistochemistry, and DNA real-time PCR detection. Diagn Cytopathol 30:411–417 [CrossRef]
    [Google Scholar]
  28. Stevens S. J., Verkuijlen S. A., Hariwiyanto B., Harijadi Fachiroh J., Paramita K. D., Tan I. B., Haryana S. M., Middeldorp J. M. 2005; Diagnostic value of measuring Epstein-Barr virus (EBV) DNA load and carcinoma-specific viral mRNA in relation to anti-EBV immunoglobulin A (IgA) and IgG antibody levels in blood of nasopharyngeal carcinoma patients from Indonesia. J Clin Microbiol 43:3066–3073 [CrossRef]
    [Google Scholar]
  29. Stöcher M., Berg J. 2002; Normalized quantification of human cytomegalovirus DNA by competitive real-time PCR on the LightCycler instrument. J Clin Microbiol 40:4547–4553 [CrossRef]
    [Google Scholar]
  30. Tong C. Y., Cuevas L. E., Williams H., Bakran A. 2000; Comparison of two commercial methods for measurement of cytomegalovirus load in blood samples after renal transplantation. J Clin Microbiol 38:1209–1213
    [Google Scholar]
  31. van Doornum G. J., Guldemeester J., Osterhaus A. D., Niesters H. G. 2003; Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol 41:576–580 [CrossRef]
    [Google Scholar]
  32. Weinberg A., Spiers D., Cai G. Y., Long C. M., Sun R., Tevere V. 1998; Evaluation of a commercial PCR kit for diagnosis of cytomegalovirus infection of the central nervous system. J Clin Microbiol 36:3382–3384
    [Google Scholar]
  33. Zweygberg-Wirgart B., Brytting M., Linde A., Wahren B., Grillner L. 1998; Sequence variation within three important cytomegalovirus gene regions in isolates from four different patient populations. J Clin Microbiol 36:3662–3669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.010587-0
Loading
/content/journal/jmm/10.1099/jmm.0.010587-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error