1887

Abstract

Chronic respiratory infections by the complex (Bcc) are of great concern to patients with cystic fibrosis. Bcc isolates may survive intracellularly within amoebae, respiratory epithelial cells and macrophages. The molecular mechanisms facilitating colonization and pathogenesis remain unclear. Given the importance of bacterial adhesion to host surfaces in microbial pathogenesis, we investigated the role of the O antigen LPS in the interaction of , a member of the Bcc, with macrophages and epithelial cells. Our results demonstrated that the O antigen modulates phagocytosis but does not affect intracellular survival of . Internalization of strains that lack O antigen was significantly increased compared to that of their isogenic smooth counterparts. However, no differences between rough and smooth strains were found in their ability to delay phagosomal maturation. We also found that the O antigen interfered with the ability of to adhere to bronchial epithelial cells, suggesting that this polysaccharide may mask one or more bacterial surface adhesins.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013235-0
2009-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/12/1542.html?itemId=/content/journal/jmm/10.1099/jmm.0.013235-0&mimeType=html&fmt=ahah

References

  1. Arjcharoen S., Wikraiphat C., Pudla M., Limposuwan K., Woods D. E., Sirisinha S., Utaisincharoen P. 2007; Fate of a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7: possible role for the O-antigenic polysaccharide moiety of lipopolysaccharide in internalization and intracellular survival. Infect Immun 75:4298–4304 [CrossRef]
    [Google Scholar]
  2. Beachey E. H. 1981; Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis 143:325–345 [CrossRef]
    [Google Scholar]
  3. Burns J. L., Jonas M., Chi E. Y., Clark D. K., Berger A., Griffith A. 1996; Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia . Infect Immun 64:4054–4059
    [Google Scholar]
  4. Clay C. D., Soni S., Gunn J. S., Schlesinger L. S. 2008; Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J Immunol 181:5568–5578 [CrossRef]
    [Google Scholar]
  5. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [CrossRef]
    [Google Scholar]
  6. Cozens A. L., Yezzi M. J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W. E., Widdicombe J. H., Gruenert D. C. 1994; CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47 [CrossRef]
    [Google Scholar]
  7. Craig F. F., Coote J. G., Parton R., Freer J. H., Gilmour N. J. 1989; A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol 135:2885–2890
    [Google Scholar]
  8. Desai M., Buhler T., Weller P. H., Brown M. R. 1998; Increasing resistance to planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J Antimicrob Chemother 42:153–160 [CrossRef]
    [Google Scholar]
  9. Evans E., Poxton I. R., Govan J. R. W. 1999; Lipopolysaccharide chemotypes of Burkholderia cepacia . J Med Microbiol 48:825–832 [CrossRef]
    [Google Scholar]
  10. Fernandez-Prada C. M., Zelazowska E. B., Nikolich M., Hadfield T. L., Roop R. M. II, Robertson G. L., Hoover D. L. 2003; Interactions between Brucella melitensis and human phagocytes: bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun 71:2110–2119 [CrossRef]
    [Google Scholar]
  11. Flannagan R. S., Aubert D., Kooi C., Sokol P. A., Valvano M. A. 2007; Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 75:1679–1689 [CrossRef]
    [Google Scholar]
  12. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  13. Govan J. R., Brown P. H., Maddison J., Doherty C. J., Nelson J. W., Dodd M., Greening A. P., Webb A. K. 1993; Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342:15–19 [CrossRef]
    [Google Scholar]
  14. Johnson W. M., Tyler S. D., Rozee K. R. 1994; Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 32:924–930
    [Google Scholar]
  15. Karlsson K. A., Angstrom J., Bergstrom J., Lanne B. 1992; Microbial interaction with animal cell surface carbohydrates. APMIS Suppl 27:71–83
    [Google Scholar]
  16. Lamothe J., Thyssen S., Valvano M. A. 2004; Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga . Cell Microbiol 6:1127–1138 [CrossRef]
    [Google Scholar]
  17. Lamothe J., Huynh K. K., Grinstein S., Valvano M. A. 2007; Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9:40–53 [CrossRef]
    [Google Scholar]
  18. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117 [CrossRef]
    [Google Scholar]
  19. LiPuma J. J., Spilker T., Gill L. H., Campbell P. W., Liu L., Mahenthiralingam E. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96 [CrossRef]
    [Google Scholar]
  20. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A. 2006; A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to polymyxin B and bacterial survival in vivo. J Bacteriol 188:2073–2080 [CrossRef]
    [Google Scholar]
  21. Mahenthiralingam E., Urban T. A., Goldberg J. B. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156 [CrossRef]
    [Google Scholar]
  22. Maier T. M., Casey M. S., Becker R. H., Dorsey C. W., Glass E. M., Maltsev N., Zahrt T. C., Frank D. W. 2007; Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 75:5376–5389 [CrossRef]
    [Google Scholar]
  23. Marolda C. L., Welsh J., Dafoe L., Valvano M. A. 1990; Genetic analysis of the O7-polysaccharide biosynthesis region from the Escherichia coli O7 : K1 strain VW187. J Bacteriol 172:3590–3599
    [Google Scholar]
  24. Marolda C. L., Hauröder B., John M. A., Michel R., Valvano M. A. 1999; Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145:1509–1517 [CrossRef]
    [Google Scholar]
  25. Murray G. L., Attridge S. R., Morona R. 2006; Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188:2735–2739 [CrossRef]
    [Google Scholar]
  26. Ortega X., Hunt T. A., Loutet S., Vinion-Dubiel A. D., Datta A., Choudhury B., Goldberg J. B., Carlson R., Valvano M. A. 2005; Reconstitution of O-specific lipopolysaccharide expression in the Burkholderia cenocepacia strain J2315 that is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187:1324–1333 [CrossRef]
    [Google Scholar]
  27. Porte F., Naroeni A., Ouahrani-Bettache S., Liautard J. P. 2003; Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 71:1481–1490 [CrossRef]
    [Google Scholar]
  28. Raetz C. R. H., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [CrossRef]
    [Google Scholar]
  29. Rajashekara G., Covert J., Petersen E., Eskra L., Splitter G. 2008; Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands. J Bacteriol 190:6243–6252 [CrossRef]
    [Google Scholar]
  30. Saini L. S., Galsworthy S. B., John M. A., Valvano M. A. 1999; Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145:3465–3475
    [Google Scholar]
  31. Sajjan S. U., Forstner J. F. 1992; Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun 60:1434–1440
    [Google Scholar]
  32. Sajjan U. S., Forstner J. F. 1993; Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect Immun 61:3157–3163
    [Google Scholar]
  33. Sajjan U. S., Sylvester F. A., Forstner J. F. 2000; Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun 68:1787–1795 [CrossRef]
    [Google Scholar]
  34. Saldías M. S., Lamothe J., Wu R., Valvano M. A. 2008; Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages. Infect Immun 76:1059–1067 [CrossRef]
    [Google Scholar]
  35. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  36. Via L. E., Fratti R. A., McFalone M., Pagan-Ramos E., Deretic D., Deretic V. 1998; Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111:897–905
    [Google Scholar]
  37. Zeitlin P. L., Lu L., Rhim J., Cutting G., Stetten G., Kieffer K. A., Craig R., Guggino W. B. 1991; A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol 4:313–319 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.013235-0
Loading
/content/journal/jmm/10.1099/jmm.0.013235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error