1887

Abstract

This study examined in detail the population structure of from healthy adults with respect to the prevalence of antibiotic resistance and specific resistance determinants. isolated from the faeces of 20 healthy adults not recently exposed to antibiotics was tested for resistance to ten antibiotics and for carriage of integrons and resistance determinants using PCR. Strain diversity was assessed using biochemical and molecular criteria. was present in 19 subjects at levels ranging from 2.0×10 to 1.7×10 c.f.u. (g faeces). Strains resistant to one to six antibiotics were found at high levels (>30 %) in only ten individuals, but at significant levels (>0.5 %) in 14. Resistant isolates with the same phenotype from the same individual were indistinguishable, but more than one susceptible strain was sometimes found. Overall, individuals harboured one to four strains, although in 17 samples one strain was dominant (>70 % of isolates). Eighteen strains resistant to ampicillin, sulfamethoxazole, tetracycline and trimethoprim in 15 different combinations were observed. One resistant strain was carried by two unrelated individuals and a susceptible strain was shared by two cohabiting subjects. Two minority strains were derivatives of a more abundant resistant strain in the same sample, showing that continuous evolution is occurring . The trimethoprim-resistance genes , , , or were in cassettes in a class 1 or class 2 integron. Ampicillin resistance was conferred by the gene, sulfamethoxazole resistance by , or and tetracycline resistance by (A) or (B). Chloramphenicol resistance ( gene) was detected only once. Phylogenetic groups A and B2 were more common than B1 and D. Commensal of healthy humans represent an important reservoir for numerous antibiotic-resistance genes in many combinations. However, measuring the true extent of resistance carriage in commensal requires in-depth analysis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022475-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1331.html?itemId=/content/journal/jmm/10.1099/jmm.0.022475-0&mimeType=html&fmt=ahah

References

  1. Adrian P. V., Klugman K. P., Amyes S. G. B. 1995a; Prevalence of trimethoprim resistant dihydrofolate reductase genes identified with oligonucleotide probes in plasmids from isolates of commensal faecal flora. J Antimicrob Chemother 35:497–508 [CrossRef]
    [Google Scholar]
  2. Adrian P. V., Thomson C. J., Klugman K. P., Amyes S. G. B. 1995b; Prevalence and genetic location of non-transferable trimethoprim resistant dihydrofolate reductase genes in South African commensal faecal isolates. Epidemiol Infect 115:255–267 [CrossRef]
    [Google Scholar]
  3. Alekshun M. N., Levy S. B. 2006; Commensals upon us. Biochem Pharmacol 71:893–900 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Bartoloni A., Pallecchi L., Benedetti M., Fernandez C., Vallejos Y., Guzman E., Villagran A. L., Mantella A., Lucchetti C. other authors 2006; Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis 12:907–913 [CrossRef]
    [Google Scholar]
  6. Bartoloni A., Pallecchi L., Rodríguez H., Fernandez C., Mantella A., Bartalesi F., Strohmeyer M., Kristiansson C., Gotuzzo E. other authors 2009; Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob Agents 33:125–129 [CrossRef]
    [Google Scholar]
  7. Clermont O., Bonacorsi S., Bingen E. 2000; Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558 [CrossRef]
    [Google Scholar]
  8. Cocchi S., Grasselli E., Gutacker M., Benagli C., Convert M., Piffaretti J. C. 2007; Distribution and characterization of integrons in Escherichia coli strains of animal and human origin. FEMS Immunol Med Microbiol 50:126–132 [CrossRef]
    [Google Scholar]
  9. Collignon P. J. 2002; Antibiotic resistance. Med J Aust 177:325–329
    [Google Scholar]
  10. Datta N. 1969; Drug resistance and R factors in the bowel bacteria of London patients before and after admission to hospital. BMJ 2:407–411 [CrossRef]
    [Google Scholar]
  11. Domínguez E., Zarazaga M., Sáenz Y., Briñas L., Torres C. 2002; Mechanisms of antibiotic resistance in Escherichia coli isolates obtained from healthy children in Spain. Microb Drug Resist 8:321–327 [CrossRef]
    [Google Scholar]
  12. Gebreyes W. A., Altier C. 2002; Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. J Clin Microbiol 40:2813–2822 [CrossRef]
    [Google Scholar]
  13. Guinée P., Ugueto N., van Leeuwen N. 1970; Escherichia coli with resistance factors in vegetarians, babies, and nonvegetarians. Appl Microbiol 20:531–535
    [Google Scholar]
  14. Hawkey P. M. 1986; Resistant bacteria in the normal human flora. J Antimicrob Chemother 18:133–139
    [Google Scholar]
  15. Ishiguro N., Sato G. 1988; Nucleotide sequence of insertion sequence IS 3411 , which flanks the citrate utilization determinant of transposon Tn 3411 . J Bacteriol 170:1902–1906
    [Google Scholar]
  16. Kronvall G., Larsson M., Boren C., Kahlmeter G., Bartoloni A., Rossolini G. M., Grape M., Kristiansson C., Karlsson I. 2005; Extended antimicrobial resistance screening of the dominant faecal Escherichia coli and of rare resistant clones. Int J Antimicrob Agents 26:473–478 [CrossRef]
    [Google Scholar]
  17. LeFrock J. L., Ellis C. A., Weinstein L. 1979; The impact of hospitalization on the aerobic fecal microflora. Am J Med Sci 277:269–274 [CrossRef]
    [Google Scholar]
  18. Lester S. C., del Pilar Pla M., Wang F., Perez Schael I., Jiang H., O'Brien T. F. 1990; The carriage of Escherichia coli resistant to antimicrobial agents by healthy children in Boston. in Caracas, Venezuela, and in Qin Pu China: N Engl J Med 323285–289 [CrossRef]
    [Google Scholar]
  19. Leverstein-van Hall M. A., Paauw A., Box A. T. A., Blok H. E. M., Verhoef J., Fluit A. C. 2002; Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. J Clin Microbiol 40:3038–3040 [CrossRef]
    [Google Scholar]
  20. Leverstein-van Hall M. A., Blok H. E. M., Donders A. R. T., Paauw A., Fluit A. C., Verhoef J. 2003; Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 187:251–259 [CrossRef]
    [Google Scholar]
  21. Levings R. S., Lightfoot D., Partridge S. R., Hall R. M., Djordjevic S. P. 2005; The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 187:4401–4409 [CrossRef]
    [Google Scholar]
  22. Levy S. B., Marshall B., Rowse-Eagle D., Onderdonk A. 1980; Survival of Escherichia coli host–vector systems in the mammalian intestine. Science 209:391–394 [CrossRef]
    [Google Scholar]
  23. Levy S. B., Marshall B., Schluederberg S., Rowse D., Davis J. 1988; High frequency of antimicrobial resistance in human fecal flora. Antimicrob Agents Chemother 32:1801–1806 [CrossRef]
    [Google Scholar]
  24. Lidin-Janson G., Kaijser B., Lincoln K., Olling S., Wedel H. 1978; The homogeneity of the faecal coliform flora of normal school-girls, characterized by serological and biochemical properties. Med Microbiol Immunol (Berl) 164:247–253 [CrossRef]
    [Google Scholar]
  25. Linton K. B., Lee P. A., Richmond M. H., Gillespie W. A., Rowland A. J., Baker V. N. 1972; Antibiotic resistance and transmissible R-factors in the intestinal coliform flora of healthy adults and children in an urban and a rural community. J Hyg (Lond 70:99–104 [CrossRef]
    [Google Scholar]
  26. London N., Nijsten R., van den Bogaard A., Stobberingh E. 1993; Antibiotic resistance of faecal Enterobacteriaceae isolated from healthy volunteers, a 15-week follow-up study. J Antimicrob Chemother 32:83–91 [CrossRef]
    [Google Scholar]
  27. Marshall B. M., Ochieng D. J., Levy S. B. 2009; Commensals: underappreciated reservoir of antibiotic resistance. Microbe 4:231–238
    [Google Scholar]
  28. Mazel D., Dychinco B., Webb V. A., Davies J. 2000; Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 44:1568–1574 [CrossRef]
    [Google Scholar]
  29. Moorhouse E. C. 1969; Transferable drug resistance in enterobacteria isolated from urban infants. BMJ 2:405–407 [CrossRef]
    [Google Scholar]
  30. Navia M. M., Ruiz J., Sanchez-Cespedes J., Vila J. 2003; Detection of dihydrofolate reductase genes by PCR and RFLP. Diagn Microbiol Infect Dis 46:295–298 [CrossRef]
    [Google Scholar]
  31. Ng L. K., Martin I., Alfa M., Mulvey M. 2001; Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15:209–215 [CrossRef]
    [Google Scholar]
  32. Nys S., Okeke I. N., Kariuki S., Dinant G. J., Driessen C., Stobberingh E. E. 2004; Antibiotic resistance of faecal Escherichia coli from healthy volunteers from eight developing countries. J Antimicrob Chemother 54:952–955 [CrossRef]
    [Google Scholar]
  33. O'Brien T. F. 2002; Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 34:S78–S84 [CrossRef]
    [Google Scholar]
  34. Ochman H., Selander R. K. 1984; Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157:690–693
    [Google Scholar]
  35. Osterblad M., Hakanen A., Manninen R., Leistevuo T., Peltonen R., Meurman O., Huovinen P., Kotilainen P. 2000; A between-species comparison of antimicrobial resistance in enterobacteria in fecal flora. Antimicrob Agents Chemother 44:1479–1484 [CrossRef]
    [Google Scholar]
  36. Pacheco A. B. F., Guth B. E. C., Soares K. C. C., Nishimura L., De Almeida D. F., Ferreira L. C. S. 1997; Random amplification of polymorphic DNA reveals serotype-specific clonal clusters among enterotoxigenic Escherichia coli strains isolated from humans. J Clin Microbiol 35:1521–1525
    [Google Scholar]
  37. Pallecchi L., Lucchetti C., Bartoloni A., Bartalesi F., Mantella A., Gamboa H., Carattoli A., Paradisi F., Rossolini G. M. 2007; Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob Agents Chemother 51:1179–1184 [CrossRef]
    [Google Scholar]
  38. Partridge S. R., Brown H. J., Stokes H. W., Hall R. M. 2001; Transposons Tn 1696 and Tn 21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 45:1263–1270 [CrossRef]
    [Google Scholar]
  39. Perreten V., Boerlin P. 2003; A new sulfonamide resistance gene ( sul3 ) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47:1169–1172 [CrossRef]
    [Google Scholar]
  40. Post V., Hall R. M. 2009; AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii . Antimicrob Agents Chemother 53:2667–2671 [CrossRef]
    [Google Scholar]
  41. Skurnik D., Le Menac'h A., Zurakowski D., Mazel D., Courvalin P., Denamur E., Andremont A., Ruimy R. 2005; Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother 49:3062–3065 [CrossRef]
    [Google Scholar]
  42. Skurnik D., Bonnet D., Bernède-Bauduin C., Michel R., Guette C., Becker J. M., Balaire C., Chau F., Mohler J. other authors 2008; Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol 10:2132–2137 [CrossRef]
    [Google Scholar]
  43. Smith H. W., Halls S. 1966; Observations on infective drug resistance in Britain. BMJ 1:266–269 [CrossRef]
    [Google Scholar]
  44. Stokes H. W., Nesbo C. L., Holley M., Bahl M. I., Gillings M. R., Boucher Y. 2006; Class 1 integrons potentially predating the association with Tn 402 -like transposition genes are present in a sediment microbial community. J Bacteriol 188:5722–5730 [CrossRef]
    [Google Scholar]
  45. Sunde M., Solheim H., Slettemeas J. S. 2008; Genetic linkage between class 1 integrons with the dfrA12 orfF aadA2 cassette array and sul3 in Escherichia coli . Vet Microbiol 130:422–425 [CrossRef]
    [Google Scholar]
  46. Sundström L., Jansson C., Bremer K., Heikkilä E., Olsson-Liljequist B., Sköld O. 1995; A new dhfrVIII trimethoprim-resistance gene, flanked by IS 26 , whose product is remote from other dihydrofolate reductases in parsimony analysis. Gene 154:7–14 [CrossRef]
    [Google Scholar]
  47. Vinué L., Sáenz Y., Somalo S., Escudero E., Moreno M. A., Ruiz-Larrea F., Torres C. 2008; Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. J Antimicrob Chemother 62:934–937 [CrossRef]
    [Google Scholar]
  48. Walk S. T., Alm E. W., Gordon D. M., Ram J. L., Toranzos G. A., Tiedje J. M., Whittam T. S. 2009; Cryptic lineages of the genus Escherichia . Appl Environ Microbiol 75:6534–6544 [CrossRef]
    [Google Scholar]
  49. White P. A., McIver C. J., Rawlinson W. D. 2001; Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2661 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022475-0
Loading
/content/journal/jmm/10.1099/jmm.0.022475-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error