1887

Abstract

Nasal colonization by is an important risk factor for the development of a nosocomial infection. Acquisition of nasal colonization by increases mortality in hospitalized patients, but little is known about the transmission dynamics of . To study transmission, colonization and colonization persistence, we developed a murine transmission model. In 20 cages, 2 out of 10 mice were nasally inoculated (at 5×10 c.f.u. per mouse) with either meticillin-susceptible (MSSA) (10 cages) or meticillin-resistant (MRSA) (10 cages). On days 5, 15, 25 and 40, all mice in a cage were swabbed or sacrificed and nasal colonization and c.f.u. were determined in all 10 mice by nasal dissection or by nasal swab. Spread and subsequent stable colonization by both MSSA and MRSA from colonized to uncolonized mice within a cage was seen. At day 5, an increased number of colonized mice were observed in the MSSA group compared to the MRSA group ( = 0.003). On day 40, the mean number of c.f.u. per mouse was higher for MRSA than for MSSA ( = 0.06). Faecal–oral transmission was shown to be a possibly important transmission route in this model. These results suggest a more rapid spread of MSSA compared to MRSA. However, MRSA shows a more stable nasal colonization after a longer period of time.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.027532-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/812.html?itemId=/content/journal/jmm/10.1099/jmm.0.027532-0&mimeType=html&fmt=ahah

References

  1. Bloemendaal A. L. A., Fluit A. C., Jansen W. M., Vriens M. R., Ferry T., Argaud L., Amorim J. M., Resende A. C., Pascual A. et al. 2009; Acquisition and cross-transmission of Staphylococcus aureus in European intensive care units. Infect Control Hosp Epidemiol 30:117–124 [View Article][PubMed]
    [Google Scholar]
  2. Bloemendaal A. L., Brouwer E. C., Fluit A. C. 2010; Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLoS ONE 5:e11841 [View Article][PubMed]
    [Google Scholar]
  3. Cosgrove S. E., Sakoulas G., Perencevich E. N., Schwaber M. J., Karchmer A. W., Carmeli Y. 2003; Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53–59 [View Article][PubMed]
    [Google Scholar]
  4. Ender M., McCallum N., Adhikari R., Berger-Bächi B. 2004; Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus . Antimicrob Agents Chemother 48:2295–2297 [View Article][PubMed]
    [Google Scholar]
  5. Girou E., Pujade G., Legrand P., Cizeau F., Brun-Buisson C. 1998; Selective screening of carriers for control of methicillin-resistant Staphylococcus aureus (MRSA) in high-risk hospital areas with a high level of endemic MRSA. Clin Infect Dis 27:543–550 [View Article][PubMed]
    [Google Scholar]
  6. Huesca M., Peralta R., Sauder D. N., Simor A. E., McGavin M. J. 2002; Adhesion and virulence properties of epidemic Canadian methicillin-resistant Staphylococcus aureus strain 1: identification of novel adhesion functions associated with plasmin-sensitive surface protein. J Infect Dis 185:1285–1296 [View Article][PubMed]
    [Google Scholar]
  7. Ibelings M. M., Bruining H. A. 1998; Methicillin-resistant Staphylococcus aureus: acquisition and risk of death in patients in the intensive care unit. Eur J Surg 164:411–418 [View Article][PubMed]
    [Google Scholar]
  8. Ikawaty R., Willems R. J., Box A. T., Verhoef J., Fluit A. C. 2008; Novel multiple-locus variable-number tandem-repeat analysis method for rapid molecular typing of human Staphylococcus aureus . J Clin Microbiol 46:3147–3151 [View Article][PubMed]
    [Google Scholar]
  9. Jansen W. T. M., Beitsma M. M., Koeman C. J., van Wamel W. J., Verhoef J., Fluit A. C. 2006; Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus . Antimicrob Agents Chemother 50:2072–2078 [View Article][PubMed]
    [Google Scholar]
  10. Kaito C., Omae Y., Matsumoto Y., Nagata M., Yamaguchi H., Aoto T., Ito T., Hiramatsu K., Sekimizu K. 2008; A novel gene, fudoh, in the SCCmec region suppresses the colony spreading ability and virulence of Staphylococcus aureus . PLoS ONE 3:e3921 [View Article][PubMed]
    [Google Scholar]
  11. Karauzum H., Ferry T., de Bentzmann S., Lina G., Bes M., Vandenesch F., Schmaler M., Berger-Bächi B., Etienne J., Landmann R. 2008; Comparison of adhesion and virulence of two predominant hospital-acquired methicillin-resistant Staphylococcus aureus clones and clonal methicillin-susceptible S. aureus isolates. Infect Immun 76:5133–5138 [View Article][PubMed]
    [Google Scholar]
  12. Kiser K. B., Cantey-Kiser J. M., Lee J. C. 1999; Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect Immun 67:5001–5006[PubMed]
    [Google Scholar]
  13. Lee S. M., Ender M., Adhikari R., Smith J. M., Berger-Bächi B., Cook G. M. 2007; Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob Agents Chemother 51:1497–1499 [View Article][PubMed]
    [Google Scholar]
  14. McCallum N., Karauzum H., Getzmann R., Bischoff M., Majcherczyk P., Berger-Bächi B., Landmann R. 2006; In vivo survival of teicoplanin-resistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob Agents Chemother 50:2352–2360 [View Article][PubMed]
    [Google Scholar]
  15. Mizobuchi S., Minami J., Jin F., Matsushita O., Okabe A. 1994; Comparison of the virulence of methicillin-resistant and methicillin-sensitive Staphylococcus aureus . Microbiol Immunol 38:599–605[PubMed] [CrossRef]
    [Google Scholar]
  16. Nagaev I., Björkman J., Andersson D. I., Hughes D. 2001; Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus . Mol Microbiol 40:433–439 [View Article][PubMed]
    [Google Scholar]
  17. O’Neill A. J., Huovinen T., Fishwick C. W., Chopra I. 2006; Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 50:298–309 [View Article][PubMed]
    [Google Scholar]
  18. Vriens M. R., Fluit A. C., Troelstra A., Verhoef J., van der Werken C. 2002; Is methicillin-resistant Staphylococcus aureus more contagious than methicillin-susceptible S. aureus in a surgical intensive care unit?. Infect Control Hosp Epidemiol 23:491–494 [View Article][PubMed]
    [Google Scholar]
  19. Wertheim H. F., Melles D. C., Vos M. C., van Leeuwen W., van Belkum A., Verbrugh H. A., Nouwen J. L. 2005; The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762 [View Article][PubMed]
    [Google Scholar]
  20. Wielders C. L., Vriens M. R., Brisse S., de Graaf-Miltenburg L. A., Troelstra A., Fleer A., Schmitz F. J., Verhoef J., Fluit A. C. 2001; In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet 357:1674–1675 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.027532-0
Loading
/content/journal/jmm/10.1099/jmm.0.027532-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error