1887

Abstract

This study analysed 330 strains isolated from patients with infection who were hospitalized in two university hospitals (H1 and H2) in Warsaw, Poland, over the period 2004–2006. Strains were investigated for the presence of (A), (B) and binary toxin (CDT) genes, and antimicrobial susceptibility was determined against nine agents. Among the 330 isolates, 150 (45.4 %) were classified as ABCDT, 18 (5.5 %) as ABCDT, 144 (43.6 %) as ABCDT and 18 (5.5 %) as ABCDT. The predominant PCR ribotype in hospitals H1 and H2 was type 017 and accounted for 48.3 and 40.0 %, respectively. Only one PCR ribotype 027 strain was found. The rates of resistance to erythromycin and clindamycin in hospitals H1 and H2 were 53.6 and 53.6 %, and 48.6 and 47.5 %, respectively, whereas resistance rates to the newer fluoroquinolones gatifloxacin and moxifloxacin were 38.5 and 38.5 % (H1) and 38.4 and 40.1 % (H2). Erythromycin resistance was frequently associated with resistance to clindamycin and newer fluoroquinolones in strains belonging to type 017. No metronidazole- and vancomycin-resistant isolates were found, although two isolates had elevated MIC values of metronidazole (MIC range 1.0−1.5 mg l) and 15 strains revealed elevated MIC values for vancomycin (MIC range 1.5–2.0 mg l). In conclusion, an increase in non-027 CDT-producing strains was observed in Poland, but PCR ribotype 017 remains a major circulating type.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029801-0
2011-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/8/1200.html?itemId=/content/journal/jmm/10.1099/jmm.0.029801-0&mimeType=html&fmt=ahah

References

  1. Arvand M., Hauri A. M., Zaiss N. H., Witte W., Bettge-Weller G. 2009; Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill 14:pii-19403[PubMed]
    [Google Scholar]
  2. Baines S. D., O’Connor R., Freeman J., Fawley W. N., Harmanus C., Mastrantonio P., Kuijper E. J., Wilcox M. H. 2008; Emergence of reduced susceptibility to metronidazole in Clostridium difficile . J Antimicrob Chemother 62:1046–1052[PubMed] [CrossRef]
    [Google Scholar]
  3. Barbut F., Mastrantonio P., Delmée M., Brazier J., Kuijper E., Poxton I. on behalf of the European Study Group on Clostridium difficile (ESGCD) 2007; Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 13:1048–1057[PubMed] [CrossRef]
    [Google Scholar]
  4. Bauer M. P., Notermans D. W., van Benthem B. H. B., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J. for the ECDIS Study Group 2011; Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73[PubMed] [CrossRef]
    [Google Scholar]
  5. Brazier J. S., Raybould R., Patel B., Duckworth G., Pearson A., Charlett A., Duerden B. I. the HPA Regional Microbiology Network 2008; Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007–08. Euro Surveill 13:pii:19000[PubMed]
    [Google Scholar]
  6. Burns P., Wooton M., Hall V., Brazier J. S., Howe R. 2007; Antimicrobial susceptibility of epidemic and nonepidemic strains of Clostridium difficile . In Abstracts of the 47th Annual Interscience Conference on Antimicrobial Agents and ChemotherapyChicago, IL17–20 September Abstract C2-2046 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Clements A. C., Magalhães R. J., Tatem A. J., Paterson D. L., Riley T. V. 2010; Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis 10:395–404[PubMed] [CrossRef]
    [Google Scholar]
  8. CLSI 2007 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 7th edn. Approved Standard M11–A7 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Freeman J., Bauer M. P., Baines S. D., Corver J., Fawley W. N., Goorhuis B., Kuijper E. J., Wilcox M. H. 2010; The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23:529–549[PubMed] [CrossRef]
    [Google Scholar]
  10. Goorhuis A., Legaria M. C., van den Berg R. J., Harmanus C., Klaassen C. H., Brazier J. S., Lumelsky G., Kuijper E. J. 2009; Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect 15:1080–1086[PubMed] [CrossRef]
    [Google Scholar]
  11. Huang H., Fang H., Weintraub A., Nord C. E. 2009; Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. Clin Microbiol Infect 15:1170–1173[PubMed] [CrossRef]
    [Google Scholar]
  12. Ilchmann C., Zaiss N. H., Speicher A., Christner M., Ackermann G., Rohde H. 2010; Comparison of resistance against erythromycin and moxifloxacin, presence of binary toxin gene and PCR ribotypes in Clostridium difficile isolates from 1990 and 2008. Eur J Clin Microbiol Infect Dis 29:1571–1573[PubMed] [CrossRef]
    [Google Scholar]
  13. Johnson S., Samore M. H., Farrow K. A., Killgore G. E., Tenover F. C., Lyras D., Rood J. I., DeGirolami P., Baltch A. L. et al. 1999; Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–1651[PubMed] [CrossRef]
    [Google Scholar]
  14. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S.-M., Chong Y., Wasito E. B. 1998; Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182[PubMed]
    [Google Scholar]
  15. Kuijper E. J., Barbut F., Brazier J. S., Kleinkauf N., Eckmanns T., Lambert M. L., Drudy D., Fitzpatrick F., Wiuff C. et al. 2008; Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13:pii:18942[PubMed]
    [Google Scholar]
  16. Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C. et al. 2005; A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449[PubMed] [CrossRef]
    [Google Scholar]
  17. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441[PubMed] [CrossRef]
    [Google Scholar]
  18. Peláez T., Alcalá L., Alonso R., Rodríguez-Créixems M., García-Lechuz J. M., Bouza E. 2002; Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother 46:1647–1650[PubMed] [CrossRef]
    [Google Scholar]
  19. Pituch H., Brazier J. S., Obuch-Woszczatyński P., Wultańska D., Meisel-Mikołajczyk F., Łuczak M. 2006; Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55:207–213[PubMed] [CrossRef]
    [Google Scholar]
  20. Pituch H., van Leeuwen W., Maquelin K., Wultańska D., Obuch-Woszczatyński P., Nurzyńska G., Kato H., Reijans M., Meisel-Mikołajczyk F. et al. 2007; Toxin profiles and resistances to macrolides and newer fluoroquinolones as epidemicity determinants of clinical isolates of Clostridium difficile from Warsaw, Poland. J Clin Microbiol 45:1607–1610[PubMed] [CrossRef]
    [Google Scholar]
  21. Schwan C., Stecher B., Tzivelekidis T., van Ham M., Rohde M., Hardt W. D., Wehland J., Aktories K. 2009; Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626[PubMed] [CrossRef]
    [Google Scholar]
  22. Shin B.-M., Kuak E. Y., Yoo H. M., Kim E. C., Lee K., Kang J.-O., Whang D. H., Shin J.-H. 2008; Multicentre study of the prevalence of toxigenic Clostridium difficile in Korea: results of a retrospective study 2000–2005. J Med Microbiol 57:697–701[PubMed] [CrossRef]
    [Google Scholar]
  23. Spigaglia P., Mastrantonio P. 2002; Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475[PubMed] [CrossRef]
    [Google Scholar]
  24. Spigaglia P., Barbanti F., Dionisi A. M., Mastrantonio P. 2010; Clostridium difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR ribotype 018. J Clin Microbiol 48:2892–2896[PubMed] [CrossRef]
    [Google Scholar]
  25. Stubbs S. L., Brazier J. S., O’Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463[PubMed]
    [Google Scholar]
  26. Stubbs S. L., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M. 2000; Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile . FEMS Microbiol Lett 186:307–312[PubMed] [CrossRef]
    [Google Scholar]
  27. Terhes G., Urbán E., Sóki J., Szikra L., Konkoly-Thege M., Vollain M., Nagy E. 2009; Assessment of changes in the epidemiology of Clostridium difficile isolated from diarrheal patients in Hungary. Anaerobe 15:237–240[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029801-0
Loading
/content/journal/jmm/10.1099/jmm.0.029801-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error