1887

Abstract

Leishmaniasis is a parasitic disease affecting over 12 million individuals worldwide. As current treatments are insufficient, the development of an effective vaccine is a priority. This study generated and assessed the efficacy of vaccines engineered from the non-colonizing, non-pathogenic Gram-positive bacterium . A truncated, codon-optimized version of the A2 antigen from was engineered for expression in in three different subcellular compartments: in the cytoplasm, secreted outside the cell or anchored to the cell wall. These three A2-expressing strains were tested for their ability to generate A2-specific immune responses and as live vaccines against visceral infection in BALB/c mice. Subcutaneous immunization with live expressing A2 anchored to the cell wall effectively induced high levels of antigen-specific serum antibodies. It was demonstrated that -based vaccines are a feasible approach in the generation of live vaccines against leishmaniasis. The strains generated in this study provide an excellent foundation for further studies on live bacterial vaccines against leishmaniasis and other pathogens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029959-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/9/1248.html?itemId=/content/journal/jmm/10.1099/jmm.0.029959-0&mimeType=html&fmt=ahah

References

  1. Abu-Dayyeh I., Shio M. T., Sato S., Akira S., Cousineau B., Olivier M. 2008; Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. PLoS Negl Trop Dis 2:e305 [View Article][PubMed]
    [Google Scholar]
  2. Avall-Jääskeläinen S., Kylä-Nikkilä K., Kahala M., Miikkulainen-Lahti T., Palva A. 2002; Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 68:5943–5951 [View Article][PubMed]
    [Google Scholar]
  3. Bahey-El-Din M., Casey P. G., Griffin B. T., Gahan C. G. 2008; Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine 26:5304–5314 [View Article][PubMed]
    [Google Scholar]
  4. Beresford T. P., Fitzsimons N. A., Brennan N. L., Cogan T. M. 2001; Recent advances in cheese microbiology. Int Dairy J 11:259–274 [View Article]
    [Google Scholar]
  5. Bermúdez-Humarán L. G., Cortes-Perez N. G., Le Loir Y., Alcocer-González J. M., Tamez-Guerra R. S., de Oca-Luna R. M., Langella P. 2004; An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53:427–433 [View Article][PubMed]
    [Google Scholar]
  6. Buccato S., Maione D., Rinaudo C. D., Volpini G., Taddei A. R., Rosini R., Telford J. L., Grandi G., Margarit I. 2006; Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. J Infect Dis 194:331–340 [View Article][PubMed]
    [Google Scholar]
  7. Casalta E., Montel M. C. 2008; Safety assessment of dairy microorganisms: the Lactococcus genus. Int J Food Microbiol 126:271–273 [View Article][PubMed]
    [Google Scholar]
  8. Charest H., Matlashewski G. 1994; Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14:2975–2984[PubMed]
    [Google Scholar]
  9. Coelho E. A., Tavares C. A., Carvalho F. A., Chaves K. F., Teixeira K. N., Rodrigues R. C., Charest H., Matlashewski G., Gazzinelli R. T., Fernandes A. P. 2003; Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect Immun 71:3988–3994 [View Article][PubMed]
    [Google Scholar]
  10. Cortes-Perez N. G., Bermúdez-Humarán L. G., Le Loir Y., Rodriguez-Padilla C., Gruss A., Saucedo-Cárdenas O., Langella P., Montes-de-Oca-Luna R. 2003; Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol Lett 229:37–42 [View Article][PubMed]
    [Google Scholar]
  11. Detmer A., Glenting J. 2006; Live bacterial vaccines – a review and identification of potential hazards. Microb Cell Fact 5:23 [View Article][PubMed]
    [Google Scholar]
  12. Dieye Y., Usai S., Clier F., Gruss A., Piard J. C. 2001; Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183:4157–4166 [View Article][PubMed]
    [Google Scholar]
  13. FDA 1995; Aminopeptidase enzyme preparation derived from lactococcus lactis. Section CFR184.1985, Code of Federal Regulations, Title 21 – Food and Drugs; Chapter I – Food and Drug Administration, Department of Health and Human Services; Subchapter B – Food for human consumption; Part 184 – Direct food substances affirmed as Generally Recognized as Safe. MD, USA: US Food and Drug Administration;
  14. Fernandes A. P., Costa M. M., Coelho E. A., Michalick M. S., de Freitas E., Melo M. N., Luiz Tafuri W., Resende D. de M., Hermont V. et al. 2008; Protective immunity against challenge with Leishmania (Leishmania) chagasi in beagle dogs vaccinated with recombinant A2 protein. Vaccine 26:5888–5895 [View Article][PubMed]
    [Google Scholar]
  15. Fuglsang A. 2003; Lactic acid bacteria as prime candidates for codon optimization. Biochem Biophys Res Commun 312:285–291 [View Article][PubMed]
    [Google Scholar]
  16. Garin Y. J., Meneceur P., Pratlong F., Dedet J. P., Derouin F., Lorenzo F. 2005; A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene. BMC Infect Dis 5:18 [View Article][PubMed]
    [Google Scholar]
  17. Ghedin E., Zhang W. W., Charest H., Sundar S., Kenney R. T., Matlashewski G. 1997; Antibody response against a Leishmania donovani amastigote-stage-specific protein in patients with visceral leishmaniasis. Clin Diagn Lab Immunol 4:530–535[PubMed]
    [Google Scholar]
  18. Ghosh A., Labrecque S., Matlashewski G. 2001a; Protection against Leishmania donovani infection by DNA vaccination: increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 19:3169–3178 [View Article][PubMed]
    [Google Scholar]
  19. Ghosh A., Zhang W. W., Matlashewski G. 2001b; Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20:59–66 [View Article][PubMed]
    [Google Scholar]
  20. Grangette C., Müller-Alouf H., Hols P., Goudercourt D., Delcour J., Turneer M., Mercenier A. 2004; Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun 72:2731–2737 [View Article][PubMed]
    [Google Scholar]
  21. Hanniffy S. B., Carter A. T., Hitchin E., Wells J. M. 2007; Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195:185–193 [View Article][PubMed]
    [Google Scholar]
  22. Kedzierski L., Zhu Y., Handman E. 2006; Leishmania vaccines: progress and problems. Parasitology 133:Suppl.S87–S112 [View Article][PubMed]
    [Google Scholar]
  23. Khamesipour A., Dowlati Y., Asilian A., Hashemi-Fesharki R., Javadi A., Noazin S., Modabber F. 2005; Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23:3642–3648 [View Article][PubMed]
    [Google Scholar]
  24. Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G., Luesink E. J., de Vos W. M. 1995; Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304 [View Article][PubMed]
    [Google Scholar]
  25. Kuipers O. P., de Ruyter P. G., Kleerebezem M., de Vos W. M. 1998; Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 [View Article]
    [Google Scholar]
  26. Le Loir Y., Gruss A., Ehrlich S. D., Langella P. 1998; A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis . J Bacteriol 180:1895–1903[PubMed]
    [Google Scholar]
  27. LeBlanc D. J., Lee L. N., Abu-Al-Jaibat A. 1992; Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28:130–145 [View Article][PubMed]
    [Google Scholar]
  28. Lee P., Abdul-Wahid A., Faubert G. M. 2009; Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii . Microbes Infect 11:20–28 [View Article][PubMed]
    [Google Scholar]
  29. Medina M., Villena J., Vintiñi E., Hebert E. M., Raya R., Alvarez S. 2008; Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice. Infect Immun 76:2696–2705 [View Article][PubMed]
    [Google Scholar]
  30. Mierau I., Kleerebezem M. 2005; 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis . Appl Microbiol Biotechnol 68:705–717 [View Article][PubMed]
    [Google Scholar]
  31. Miyoshi A., Poquet I., Azevedo V., Commissaire J., Bermúdez-Humarán L., Domakova E., Le Loir Y., Oliveira S. C., Gruss A., Langella P. 2002; Controlled production of stable heterologous proteins in Lactococcus lactis . Appl Environ Microbiol 68:3141–3146 [View Article][PubMed]
    [Google Scholar]
  32. Mizbani A., Taheri T., Zahedifard F., Taslimi Y., Azizi H., Azadmanesh K., Papadopoulou B., Rafati S. 2009; Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28:53–62 [View Article][PubMed]
    [Google Scholar]
  33. Piard J. C., Hautefort I., Fischetti V. A., Ehrlich S. D., Fons M., Gruss A. 1997; Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179:3068–3072[PubMed]
    [Google Scholar]
  34. Resende D. M., Caetano B. C., Dutra M. S., Penido M. L., Abrantes C. F., Verly R. M., Resende J. M., Piló-Veloso D., Rezende S. A., Bruna-Romero O. 2008; Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: correlation with IFN-γ and cytolytic activity by CD8+ T cells. Vaccine 26:4585–4593 [View Article][PubMed]
    [Google Scholar]
  35. Ribeiro L. A., Azevedo V., Le Loir Y., Oliveira S. C., Dieye Y., Piard J. C., Gruss A., Langella P. 2002; Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916 [View Article][PubMed]
    [Google Scholar]
  36. Robinson K., Chamberlain L. M., Lopez M. C., Rush C. M., Marcotte H., Le Page R. W., Wells J. M. 2004; Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect Immun 72:2753–2761 [View Article][PubMed]
    [Google Scholar]
  37. Roy G., Dumas C., Sereno D., Wu Y., Singh A. K., Tremblay M. J., Ouellette M., Olivier M., Papadopoulou B. 2000; Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 110:195–206 [View Article][PubMed]
    [Google Scholar]
  38. Scavone P., Miyoshi A., Rial A., Chabalgoity A., Langella P., Azevedo V., Zunino P. 2007; Intranasal immunisation with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes Infect 9:821–828 [View Article][PubMed]
    [Google Scholar]
  39. Stavnezer J. 1996; Immunoglobulin class switching. Curr Opin Immunol 8:199–205 [View Article][PubMed]
    [Google Scholar]
  40. Steidler L. 2003; Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17:861–876 [View Article][PubMed]
    [Google Scholar]
  41. Tsang R. S. W., Nielsen K. H., Johnson W. M. 1995; Development of an indirect whole cell ELISA for the rapid identification of Salmonella . J Rapid Methods Autom Microbiol 4:139–154 [View Article]
    [Google Scholar]
  42. Wells J. M., Wilson P. W., Le Page R. W. 1993; Improved cloning vectors and transformation procedure for Lactococcus lactis . J Appl Bacteriol 74:629–636[PubMed] [CrossRef]
    [Google Scholar]
  43. Yam K. K., Pouliot P., N’diaye M. M., Fournier S., Olivier M., Cousineau B. 2008; Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis . Vaccine 26:2689–2699 [View Article][PubMed]
    [Google Scholar]
  44. Zhang W.-W., Matlashewski G. 2001; Characterization of the A2–A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39:935–948 [View Article][PubMed]
    [Google Scholar]
  45. Zhang W.-W., Charest H., Ghedin E., Matlashewski G. 1996; Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani . Mol Biochem Parasitol 78:79–90 [View Article][PubMed]
    [Google Scholar]
  46. Zhang W.-W., Mendez S., Ghosh A., Myler P., Ivens A., Clos J., Sacks D. L., Matlashewski G. 2003; Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J Biol Chem 278:35508–35515 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029959-0
Loading
/content/journal/jmm/10.1099/jmm.0.029959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error