1887

Abstract

The B&B clone was found previously to be responsible for an epidemic outbreak within an intensive care unit in France. This clone belongs to the ST32 clonal complex, which is one of the most prevalent among French cystic fibrosis patients and is known to be related to the highly virulent ET12 clonal complex. Genomic repartition biases of insertion sequences (ISs) were investigated to improve our understanding of the evolutionary events leading to diversification and the emergence of such epidemic lineages. IS were used for tracking convergent genetic inactivations and recent DNA acquisitions. IS families and subgroups were compared in terms of genetic diversity and genomic architecture using fully sequenced genomes, PCR screening and DNA blot analysis. These analyses revealed several features shared by the B&B and ET12 epidemic clones. IS elements showed a frequent localization on genomic islands (GI) and indicated convergent evolution towards inactivation of certain loci. The IS subgroup of the IS family was identified as a good indicator of recently acquired GIs in clone ET12. Several IS elements showed strain-specific or clonal complex-specific localizations. IS DNA probing of a DNA library built from the B&B epidemic clone led to the identification of a recently acquired IS-tagged GI likely to be conjugative and integrative. The B&B clone showed significant differences in its IS architecture from that of ST32 strains isolated from Czech cystic fibrosis patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.036822-0
2012-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/3/394.html?itemId=/content/journal/jmm/10.1099/jmm.0.036822-0&mimeType=html&fmt=ahah

References

  1. Abalain M. L., Héry-Arnaud G., Gouriou S., Lintanf J., Barrere V., Segonds C., Chabanon G., Rault G., Barbier G., Payan C. 2009; Clonally identical Burkholderia cepacia complex (Bcc) sequence type strain ST32 isolated from cystic fibrosis (CF) patients in French western Brittany compared to epidemiology of Bcc strains in France using multilocus sequence typing (MLST). J Cyst Fibros 8:S34 [View Article]
    [Google Scholar]
  2. Bauer D. W., Collmer A. 1997; Molecular cloning, characterization, and mutagenesis of a pel gene from Pseudomonas syringae pv. lachrymans encoding a member of the Erwinia chrysanthemi pelADE family of pectate lyases. Mol Plant Microbe Interact 10:369–379 [View Article][PubMed]
    [Google Scholar]
  3. Bertani G. 1951; Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol 62:293–300[PubMed]
    [Google Scholar]
  4. Carver T. J., Rutherford K. M., Berriman M., Rajandream M. A., Barrell B. G., Parkhill J. 2005; act: the Artemis Comparison Tool. Bioinformatics 21:3422–3423 [View Article][PubMed]
    [Google Scholar]
  5. Coenye T., LiPuma J. J. 2003; Population structure analysis of Burkholderia cepacia genomovar III: varying degrees of genetic recombination characterize major clonal complexes. Microbiology 149:77–88 [View Article][PubMed]
    [Google Scholar]
  6. Coenye T., Spilker T., Van Schoor A., LiPuma J. J., Vandamme P. 2004; Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax 59:952–954 [View Article][PubMed]
    [Google Scholar]
  7. Cournoyer B., Normand P. 1994; Characterization of a spontaneous thiostrepton-resistant Frankia alni infective isolate using PCR-RFLP of nif and glnII genes. Soil Biol Biochem 26:553–559 [View Article]
    [Google Scholar]
  8. Drevinek P., Mahenthiralingam E. 2010; Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830 [View Article][PubMed]
    [Google Scholar]
  9. Drevinek P., Baldwin A., Lindenburg L., Joshi L. T., Marchbank A., Vosahlikova S., Dowson C. G., Mahenthiralingam E. 2010; Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 48:34–40 [View Article][PubMed]
    [Google Scholar]
  10. Fluman N., Bibi E. 2009; Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim Biophys Acta 1794:738–747[PubMed] [CrossRef]
    [Google Scholar]
  11. Godoy D., Randle G., Simpson A. J., Aanensen D. M., Pitt T. L., Kinoshita R., Spratt B. G. 2003; Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei . J Clin Microbiol 41:2068–2079 [View Article][PubMed]
    [Google Scholar]
  12. Graindorge A., Menard A., Neto M., Bouvet C., Miollan R., Gaillard S., de Montclos H., Laurent F., Cournoyer B. 2010; Epidemiology and molecular characterization of a clone of Burkholderia cenocepacia responsible for nosocomial pulmonary tract infections in a French intensive care unit. Diagn Microbiol Infect Dis 66:29–40 [View Article][PubMed]
    [Google Scholar]
  13. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A. other authors 2009; The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277 [View Article][PubMed]
    [Google Scholar]
  14. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210 [View Article][PubMed]
    [Google Scholar]
  15. Janssen P. J., Van Houdt R., Moors H., Monsieurs P., Morin N., Michaux A., Benotmane M. A., Leys N., Vallaeys T. other authors 2010; The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433 [View Article][PubMed]
    [Google Scholar]
  16. Johnson W. M., Tyler S. D., Rozee K. R. 1994; Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 32:924–930[PubMed]
    [Google Scholar]
  17. Kenna D. T., Yesilkaya H., Forbes K. J., Barcus V. A., Vandamme P., Govan J. R. 2006; Distribution and genomic location of active insertion sequences in the Burkholderia cepacia complex. J Med Microbiol 55:1–10 [View Article][PubMed]
    [Google Scholar]
  18. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  19. LiPuma J. J., Mortensen J. E., Dasen S. E., Edlind T. D., Schidlow D. V., Burns J. L., Stull T. L. 1988; Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 113:859–862 [View Article][PubMed]
    [Google Scholar]
  20. Liu L., Spilker T., Coenye T., LiPuma J. J. 2003; Identification by subtractive hybridization of a novel insertion element specific for two widespread Burkholderia cepacia genomovar III strains. J Clin Microbiol 41:2471–2476 [View Article][PubMed]
    [Google Scholar]
  21. Mahenthiralingam E., Bischof J., Byrne S. K., Radomski C., Davies J. E., Av-Gay Y., Vandamme P. 2000; DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173[PubMed]
    [Google Scholar]
  22. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774[PubMed]
    [Google Scholar]
  23. Menard A., Monnez C., Estrada de Los Santos P., Segonds C., Caballero-Mellado J., Lipuma J. J., Chabanon G., Cournoyer B. 2007; Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. Environ Microbiol 9:1176–1185 [View Article][PubMed]
    [Google Scholar]
  24. Miché L., Faure D., Blot M., Cabanne-Giuli E., Balandreau J. 2001; Detection and activity of insertion sequences in environmental strains of Burkholderia . Environ Microbiol 3:766–773 [View Article][PubMed]
    [Google Scholar]
  25. Mijnendonckx K., Provoost A., Monsieurs P., Leys N., Mergeay M., Mahillon J., Van Houdt R. 2011; Insertion sequence elements in Cupriavidus metallidurans CH34: distribution and role in adaptation. Plasmid 65:193–203[PubMed] [CrossRef]
    [Google Scholar]
  26. Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T., Ulrich R. L., Ronning C. M., Brinkac L. M. other authors 2004; Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251 [View Article][PubMed]
    [Google Scholar]
  27. Parsons Y. N., Banasko R., Detsika M. G., Duangsonk K., Rainbow L., Hart C. A., Winstanley C. 2003; Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch Microbiol 179:214–223[PubMed]
    [Google Scholar]
  28. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  29. Saiman L., Siegel J. 2004; Infection control in cystic fibrosis. Clin Microbiol Rev 17:57–71 [View Article][PubMed]
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  32. Song H., Hwang J., Yi H., Ulrich R. L., Yu Y., Nierman W. C., Kim H. S. 2010; The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog 6:e1000922 [View Article][PubMed]
    [Google Scholar]
  33. Tyler S. D., Rozee K. R., Johnson W. M. 1996; Identification of IS1356, a new insertion sequence, and its association with IS402 in epidemic strains of Burkholderia cepacia infecting cystic fibrosis patients. J Clin Microbiol 34:1610–1616[PubMed]
    [Google Scholar]
  34. Vanlaere E., Baldwin A., Gevers D., Henry D., De Brandt E., LiPuma J. J., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P. 2009; Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov.. Int J Syst Evol Microbiol 59:102–111 [View Article][PubMed]
    [Google Scholar]
  35. Vial L., Chapalain A., Groleau M. C., Déziel E. 2011; The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12 [View Article][PubMed]
    [Google Scholar]
  36. Wagner A. 2006; Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733 [View Article][PubMed]
    [Google Scholar]
  37. Wagner A. 2009; Transposable elements as genomic diseases. Mol Biosyst 5:32–35 [View Article][PubMed]
    [Google Scholar]
  38. Wozniak R. A., Waldor M. K. 2010; Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.036822-0
Loading
/content/journal/jmm/10.1099/jmm.0.036822-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error