1887

Abstract

is a leading cause of catheter infections, and biofilm formation plays a key role in the pathogenesis. Metal ion chelators inhibit bacterial biofilm formation and viability, making them attractive candidates as components in catheter lock solutions. The goal of this study was to characterize further the effect of chelators on biofilm formation. The effect of the calcium chelators ethylene glycol tetraacetic acid (EGTA) and trisodium citrate (TSC) on biofilm formation by 30 strains was tested. The response to subinhibitory doses of EGTA and TSC varied dramatically depending on strain variation. In some strains, the chelators prevented biofilm formation, in others they had no effect, and they actually enhanced biofilm formation in others. The molecular basis for this phenotypic variability was investigated using two related strains: Newman, in which biofilm formation was inhibited by chelators, and 10833, which formed strong biofilms in the presence of chelators. It was found that deletion of the gene encoding the surface adhesin clumping factor B () completely eliminated chelator-induced biofilm formation in strain 10833. The role of ClfB in biofilm formation activity in chelators was confirmed in additional strains. It was concluded that biofilm-forming ability varies strikingly depending on strain background, and that ClfB is involved in biofilm formation in the presence EGTA and citrate. These results suggest that subinhibitory doses of chelating agents in catheter lock solutions may actually augment biofilm formation in certain strains of , and emphasize the importance of using these agents appropriately so that inhibitory doses are achieved consistently.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.040758-0
2012-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/8/1062.html?itemId=/content/journal/jmm/10.1099/jmm.0.040758-0&mimeType=html&fmt=ahah

References

  1. Arnaud M., Chastanet A., Débarbouillé M. 2004; New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891 [View Article][PubMed]
    [Google Scholar]
  2. Baba T., Bae T., Schneewind O., Takeuchi F., Hiramatsu K. 2008; Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310 [View Article][PubMed]
    [Google Scholar]
  3. Banin E., Brady K. M., Greenberg E. P. 2006; Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–2069 [View Article][PubMed]
    [Google Scholar]
  4. Centers for Disease Control and Prevention 2011; Vital signs: central line-associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep 60:243–248[PubMed]
    [Google Scholar]
  5. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006[PubMed]
    [Google Scholar]
  6. Clarke S. R., Foster S. J. 2006; Surface adhesins of Staphylococcus aureus . Adv Microb Physiol 51:187–224 [View Article][PubMed]
    [Google Scholar]
  7. Corrigan R. M., Rigby D., Handley P., Foster T. J. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446 [View Article][PubMed]
    [Google Scholar]
  8. Cucarella C., Tormo M. A., Knecht E., Amorena B., Lasa I., Foster T. J., Penadés J. R. 2002; Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186 [View Article][PubMed]
    [Google Scholar]
  9. Dunne W. M. Jr, Burd E. M. 1992; The effects of magnesium, calcium, EDTA, and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol Immunol 36:1019–1027[PubMed] [CrossRef]
    [Google Scholar]
  10. Duthie E. S., Lorenz L. L. 1952; Staphylococcal coagulase: mode of action and antigenicity. J Gen Microbiol 6:95–107[PubMed] [CrossRef]
    [Google Scholar]
  11. Grundmeier M., Hussain M., Becker P., Heilmann C., Peters G., Sinha B. 2004; Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 72:7155–7163 [View Article][PubMed]
    [Google Scholar]
  12. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 [View Article][PubMed]
    [Google Scholar]
  13. Juda M., Paprota K., Jałoza D., Malm A., Rybojad P., Goździuk K. 2008; EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials. Ann Agric Environ Med 15:237–241[PubMed]
    [Google Scholar]
  14. Kasatiya S. S., Baldwin J. N. 1967; Nature of the determinant of tetracycline resistance in Staphylococcus aureus . Can J Microbiol 13:1079–1086 [View Article][PubMed]
    [Google Scholar]
  15. Lee J. C. 1993 Electrotransformation of Staphylococci Totowa, NJ: Humana Press;
    [Google Scholar]
  16. Luong T. T., Lee C. Y. 2006; The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 152:3123–3131 [View Article][PubMed]
    [Google Scholar]
  17. Maira-Litrán T., Kropec A., Goldmann D. A., Pier G. B. 2005; Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-β-(1-6)-glucosamine. Infect Immun 73:6752–6762 [View Article][PubMed]
    [Google Scholar]
  18. Mermel L. A., Allon M., Bouza E., Craven D. E., Flynn P., O’Grady N. P., Raad I. I., Rijnders B. J., Sherertz R. J., Warren D. K. 2009; Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45 Erratum Clin Infect Dis 50:457 2010 Clin Infect Dis 50:1079 2010 [View Article][PubMed]
    [Google Scholar]
  19. Ní Eidhin D., Perkins S., Francois P., Vaudaux P., Höök M., Foster T. J. 1998; Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol 30:245–257 [View Article][PubMed]
    [Google Scholar]
  20. O’Grady N. P., Alexander M., Burns L. A., Dellinger E. P., Garland J., Heard S. O., Lipsett P. A., Masur H., Mermel L. A. other authors 2011; Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39:Suppl. 1S1–S34 [View Article][PubMed]
    [Google Scholar]
  21. Ozerdem Akpolat N., Elçi S., Atmaca S., Akbayin H., Gül K. 2003; The effects of magnesium, calcium and EDTA on slime production by Staphylococcus epidermidis strains. Folia Microbiol (Praha) 48:649–653 [View Article][PubMed]
    [Google Scholar]
  22. Percival S. L., Kite P., Eastwood K., Murga R., Carr J., Arduino M. J., Donlan R. M. 2005; Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol 26:515–519 [View Article][PubMed]
    [Google Scholar]
  23. Raad I., Chatzinikolaou I., Chaiban G., Hanna H., Hachem R., Dvorak T., Cook G., Costerton W. 2003; In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47:3580–3585 [View Article][PubMed]
    [Google Scholar]
  24. Sarkisova S., Patrauchan M. A., Berglund D., Nivens D. E., Franklin M. J. 2005; Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187:4327–4337 [View Article][PubMed]
    [Google Scholar]
  25. Shanks R. M., Sargent J. L., Martinez R. M., Graber M. L., O’Toole G. A. 2006; Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant 21:2247–2255 [View Article][PubMed]
    [Google Scholar]
  26. Shanks R. M., Meehl M. A., Brothers K. M., Martinez R. M., Donegan N. P., Graber M. L., Cheung A. L., O’Toole G. A. 2008; Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect Immun 76:2469–2477 [View Article][PubMed]
    [Google Scholar]
  27. Wann E. R., Gurusiddappa S., Hook M. 2000; The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871 [View Article][PubMed]
    [Google Scholar]
  28. Weijmer M. C., Debets-Ossenkopp Y. J., Van De Vondervoort F. J., ter Wee P. M. 2002; Superior antimicrobial activity of trisodium citrate over heparin for catheter locking. Nephrol Dial Transplant 17:2189–2195 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.040758-0
Loading
/content/journal/jmm/10.1099/jmm.0.040758-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error