1887

Abstract

The nucleolus is a distinct subnuclear compartment known as the site for ribosome biogenesis in eukaryotes. Consequently, the nucleolus is also proposed to function in cell-cycle control, stress sensing and senescence, as well as in viral infection. An increasing number of viral proteins have been found to localize to the nucleolus. In this article, we review the current understanding of the functions of the nucleolus, the molecular mechanism of cellular and viral protein targeting to the nucleolus and the functional roles of the nucleolus during viral infection with a specific focus on the herpesvirus family.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.045963-0
2012-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1637.html?itemId=/content/journal/jmm/10.1099/jmm.0.045963-0&mimeType=html&fmt=ahah

References

  1. Ahmad Y., Boisvert F. M., Gregor P., Cobley A., Lamond A. I. 2009; NOPdb: Nucleolar Proteome Database – 2008 update. Nucleic Acids Res 37:Database issueD181–D184 [View Article][PubMed]
    [Google Scholar]
  2. Andersen J. S., Lyon C. E., Fox A. H., Leung A. K., Lam Y. W., Steen H., Mann M., Lamond A. I. 2002; Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11 [View Article][PubMed]
    [Google Scholar]
  3. Andersen J. S., Lam Y. W., Leung A. K., Ong S. E., Lyon C. E., Lamond A. I., Mann M. 2005; Nucleolar proteome dynamics. Nature 433:77–83 [View Article][PubMed]
    [Google Scholar]
  4. Pearson A., Bourget A., Abdeljelil N. B., Lymberopoulos M. H. 2011; Role of the viral protein UL24 in nucleolar modifications induced by herpes simplex virus 1. BMC Proceedings 5:102 [CrossRef]
    [Google Scholar]
  5. Arcangeletti M. C., Rodighiero I., Mirandola P., De Conto F., Covan S., Germini D., Razin S., Dettori G., Chezzi C. 2011; Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro . J Cell Biochem 112:307–317 [View Article][PubMed]
    [Google Scholar]
  6. Balasubramanian N., Bai P., Buchek G., Korza G., Weller S. K. 2010; Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 84:12504–12514 [View Article][PubMed]
    [Google Scholar]
  7. Bártová E., Horáková A. H., Uhlírová R., Raska I., Galiová G., Orlova D., Kozubek S. 2010; Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 58:391–403 [View Article][PubMed]
    [Google Scholar]
  8. Birbach A., Bailey S. T., Ghosh S., Schmid J. A. 2004; Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-κB inducing kinase NIK. J Cell Sci 117:3615–3624 [View Article][PubMed]
    [Google Scholar]
  9. Boisvert F. M., van Koningsbruggen S., Navascués J., Lamond A. I. 2007; The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585 [View Article][PubMed]
    [Google Scholar]
  10. Boisvert F. M., Lam Y. W., Lamont D., Lamond A. I. 2010; A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9:457–470 [View Article][PubMed]
    [Google Scholar]
  11. Boulikas T. 1993; Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr 3:193–227[PubMed]
    [Google Scholar]
  12. Boulon S., Westman B. J., Hutten S., Boisvert F. M., Lamond A. I. 2010; The nucleolus under stress. Mol Cell 40:216–227 [View Article][PubMed]
    [Google Scholar]
  13. Boyne J. R., Whitehouse A. 2006; Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNA. Proc Natl Acad Sci USA 103:15190–15195 [CrossRef]
    [Google Scholar]
  14. Boyne J. R., Whitehouse A. 2009; Nucleolar disruption impairs Kaposi’s sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett 583:3549–3556 [View Article][PubMed]
    [Google Scholar]
  15. Burch A. D., Weller S. K. 2004; Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. J Virol 78:7175–7185 [View Article][PubMed]
    [Google Scholar]
  16. Caburet S., Conti C., Schurra C., Lebofsky R., Edelstein S. J., Bensimon A. 2005; Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15:1079–1085 [View Article][PubMed]
    [Google Scholar]
  17. Callé A., Ugrinova I., Epstein A. L., Bouvet P., Diaz J. J., Greco A. 2008; Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol 82:4762–4773 [View Article][PubMed]
    [Google Scholar]
  18. Carmo-Fonseca M., Mendes-Soares L., Campos I. 2000; To be or not to be in the nucleolus. Nat Cell Biol 2:E107–E112 [View Article]
    [Google Scholar]
  19. Carter B. Z., Qiu Y. H., Zhang N., Coombes K. R., Mak D. H., Thomas D. A., Ravandi F., Kantarjian H. M., Koller E. other authors 2011; Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood 117:780–787 [View Article][PubMed]
    [Google Scholar]
  20. Casafont I., Bengoechea R., Navascués J., Pena E., Berciano M. T., Lafarga M. 2007; The giant fibrillar center: a nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons. J Struct Biol 159:451–461 [View Article][PubMed]
    [Google Scholar]
  21. Catez F., Erard M., Schaerer-Uthurralt N., Kindbeiter K., Madjar J. J., Diaz J. J. 2002; Unique motif for nucleolar retention and nuclear export regulated by phosphorylation. Mol Cell Biol 22:1126–1139 [View Article][PubMed]
    [Google Scholar]
  22. Cheng G., Brett M. E., He B. 2002; Signals that dictate nuclear, nucleolar, and cytoplasmic shuttling of the γ134.5 protein of herpes simplex virus type 1. J Virol 76:9434–9445 [View Article][PubMed]
    [Google Scholar]
  23. Cmarko D., Smigova J., Minichova L., Popov A. 2008; Nucleolus: the ribosome factory. Histol Histopathol 23:1291–1298[PubMed]
    [Google Scholar]
  24. Cokol M., Nair R., Rost B. 2000; Finding nuclear localization signals. EMBO Rep 1:411–415 [View Article][PubMed]
    [Google Scholar]
  25. Daelemans D., Costes S. V., Cho E. H., Erwin-Cohen R. A., Lockett S., Pavlakis G. N. 2004; In vivo HIV-1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. J Biol Chem 279:50167–50175 [View Article][PubMed]
    [Google Scholar]
  26. Diaz J. J., Giraud S., Greco A. 2002; Alteration of ribosomal protein maps in herpes simplex virus type 1 infection. J Chromatogr B Analyt Technol Biomed Life Sci 771:237–249 [View Article][PubMed]
    [Google Scholar]
  27. Dimario P. J. 2004; Cell and molecular biology of nucleolar assembly and disassembly. Int Rev Cytol 239:99–178 [View Article][PubMed]
    [Google Scholar]
  28. Emmott E., Hiscox J. A. 2009; Nucleolar targeting: the hub of the matter. EMBO Rep 10:231–238 [View Article][PubMed]
    [Google Scholar]
  29. Fankhauser C., Izaurralde E., Adachi Y., Wingfield P., Laemmli U. K. 1991; Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575[PubMed]
    [Google Scholar]
  30. Fuhrman L. E., Goel A. K., Smith J., Shianna K. V., Aballay A. 2009; Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 5:e1000657 [View Article][PubMed]
    [Google Scholar]
  31. Gill G. 2004; SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?. Genes Dev 18:2046–2059 [View Article][PubMed]
    [Google Scholar]
  32. Gong L., Yeh E. T. 2006; Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281:15869–15877 [View Article][PubMed]
    [Google Scholar]
  33. Grisendi S., Mecucci C., Falini B., Pandolfi P. P. 2006; Nucleophosmin and cancer. Nat Rev Cancer 6:493–505 [View Article][PubMed]
    [Google Scholar]
  34. Guo H., Ding Q., Lin F., Pan W., Lin J., Zheng A. C. 2009; Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res 145:312–320 [View Article][PubMed]
    [Google Scholar]
  35. Haindl M., Harasim T., Eick D., Muller S. 2008; The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9:273–279 [View Article][PubMed]
    [Google Scholar]
  36. Hernandez-Verdun D. 2006; Nucleolus: from structure to dynamics. Histochem Cell Biol 125:127–137 [View Article][PubMed]
    [Google Scholar]
  37. Hernandez-Verdun D. 2011; Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2:189–194 [View Article][PubMed]
    [Google Scholar]
  38. Hiscox J. A. 2002; The nucleolus – a gateway to viral infection?. Arch Virol 147:1077–1089 [View Article][PubMed]
    [Google Scholar]
  39. Hiscox J. A. 2007; RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127 [View Article][PubMed]
    [Google Scholar]
  40. Hiscox J. A., Whitehouse A., Matthews D. A. 2010; Nucleolar proteomics and viral infection. Proteomics 10:4077–4086 [View Article][PubMed]
    [Google Scholar]
  41. Kar B., Liu B., Zhou Z., Lam Y. W. 2011; Quantitative nucleolar proteomics reveals nuclear re-organization during stress-induced senescence in mouse fibroblast. BMC Cell Biol 12:33 [View Article][PubMed]
    [Google Scholar]
  42. Kubota S., Copeland T. D., Pomerantz R. J. 1999; Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene 18:1503–1514 [View Article][PubMed]
    [Google Scholar]
  43. Kuo C. W., Wang W. H., Liu S. T. 2011; Mapping signals that are important for nuclear and nucleolar localization in MCRS2. Mol Cells 31:547–552 [View Article][PubMed]
    [Google Scholar]
  44. la Cour T., Kiemer L., Mølgaard A., Gupta R., Skriver K., Brunak S. 2004; Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536 [View Article][PubMed]
    [Google Scholar]
  45. Lam Y. W., Evans V. C., Heesom K. J., Lamond A. I., Matthews D. A. 2010; Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 9:117–130 [View Article][PubMed]
    [Google Scholar]
  46. Leung A. K., Gerlich D., Miller G., Lyon C., Lam Y. W., Lleres D., Daigle N., Zomerdijk J., Ellenberg J., Lamond A. I. 2004; Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800 [View Article][PubMed]
    [Google Scholar]
  47. Leung A. K., Trinkle-Mulcahy L., Lam Y. W., Andersen J. S., Mann M., Lamond A. I. 2006; NOPdb: Nucleolar Proteome Database. Nucleic Acids Res 34:Database issueD218–D220 [View Article][PubMed]
    [Google Scholar]
  48. Li M., Wang S., Cai M., Zheng C. 2011; Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85:10239–10251 [View Article][PubMed]
    [Google Scholar]
  49. Lindström M. S., Zhang Y. 2006; B23 and ARF: friends or foes?. Cell Biochem Biophys 46:79–90 [View Article][PubMed]
    [Google Scholar]
  50. Liu X., Liu Z., Jang S. W., Ma Z., Shinmura K., Kang S., Dong S., Chen J., Fukasawa K., Ye K. 2007; SUMOylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. Proc Natl Acad Sci U S A 104:9679–9684 [View Article][PubMed]
    [Google Scholar]
  51. Lo S. J., Lee C. C., Lai H. J. 2006; The nucleolus: reviewing oldies to have new understandings. Cell Res 16:530–538 [View Article][PubMed]
    [Google Scholar]
  52. Lohrum M. A., Ashcroft M., Kubbutat M. H., Vousden K. H. 2000; Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2:179–181 [View Article][PubMed]
    [Google Scholar]
  53. López M. R., Schlegel E. F., Wintersteller S., Blaho J. A. 2008; The major tegument structural protein VP22 targets areas of dispersed nucleolin and marginalized chromatin during productive herpes simplex virus 1 infection. Virus Res 136:175–188 [View Article][PubMed]
    [Google Scholar]
  54. Lymberopoulos M. H., Pearson A. 2007; Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 363:397–409 [View Article][PubMed]
    [Google Scholar]
  55. Lymberopoulos M. H., Bourget A., Ben Abdeljelil N., Pearson A. 2011; Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 412:341–348 [View Article][PubMed]
    [Google Scholar]
  56. MacLean C. A., Rixon F. J., Marsden H. S. 1987; The products of gene US11 of herpes simplex virus type 1 are DNA-binding and localize to the nucleoli of infected cells. J Gen Virol 68:1921–1937 [View Article][PubMed]
    [Google Scholar]
  57. Mears W. E., Lam V., Rice S. A. 1995; Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J Virol 69:935–947[PubMed]
    [Google Scholar]
  58. Michienzi A., Cagnon L., Bahner I., Rossi J. J. 2000; Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci U S A 97:8955–8960 [View Article][PubMed]
    [Google Scholar]
  59. Mongelard F., Bouvet P. 2007; Nucleolin: a multiFACeTed protein. Trends Cell Biol 17:80–86 [View Article][PubMed]
    [Google Scholar]
  60. Moore H. M., Bai B., Boisvert F. M., Latonen L., Rantanen V., Simpson J. C., Pepperkok R., Lamond A. I., Laiho M. 2011; Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:Suppl. 10 (available online) [View Article]
    [Google Scholar]
  61. Morency E., Couté Y., Thomas J., Texier P., Lomonte P. 2005; The protein ICP0 of herpes simplex virus type 1 is targeted to nucleoli of infected cells. Brief report. Arch Virol 150:2387–2395 [View Article][PubMed]
    [Google Scholar]
  62. Nicol S. M., Causevic M., Prescott A. R., Fuller-Pace F. V. 2000; The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res 257:272–280 [View Article][PubMed]
    [Google Scholar]
  63. Nishida T., Tanaka H., Yasuda H. 2000; A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 267:6423–6427 [View Article][PubMed]
    [Google Scholar]
  64. Olson M. O., Dundr M. 2005; The moving parts of the nucleolus. Histochem Cell Biol 123:203–216 [View Article][PubMed]
    [Google Scholar]
  65. Pederson T. 2011; The nucleolus. Cold Spring Harb Perspect Biol 3:part 3 (available online) [View Article]
    [Google Scholar]
  66. Pederson T., Tsai R. Y. 2009; In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184:771–776 [View Article][PubMed]
    [Google Scholar]
  67. Raska I., Shaw P. J., Cmarko D. 2006; New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235 [View Article][PubMed]
    [Google Scholar]
  68. Reed M. L., Dove B. K., Jackson R. M., Collins R., Brooks G., Hiscox J. A. 2006; Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 7:833–848 [View Article][PubMed]
    [Google Scholar]
  69. Ruggero D., Pandolfi P. P. 2003; Does the ribosome translate cancer?. Nat Rev Cancer 3:179–192 [View Article][PubMed]
    [Google Scholar]
  70. Sagou K., Uema M., Kawaguchi Y. 2010; Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. J Virol 84:2110–2121 [View Article][PubMed]
    [Google Scholar]
  71. Sasaki M., Kawahara K., Nishio M., Mimori K., Kogo R., Hamada K., Itoh B., Wang J., Komatsu Y. other authors 2011; Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 17:944–951 [View Article][PubMed]
    [Google Scholar]
  72. Scherl A., Couté Y., Déon C., Callé A., Kindbeiter K., Sanchez J. C., Greco A., Hochstrasser D., Diaz J. J. 2002; Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109 [View Article][PubMed]
    [Google Scholar]
  73. Scott M. S., Boisvert F. M., McDowall M. D., Lamond A. I., Barton G. J. 2010; Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 38:7388–7399 [View Article][PubMed]
    [Google Scholar]
  74. Scott M. S., Troshin P. V., Barton G. J. 2011; NoD: a nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics 12:317 [View Article][PubMed]
    [Google Scholar]
  75. Shen Q., Zheng X., McNutt M. A., Guang L., Sun Y., Wang J., Gong Y., Hou L., Zhang B. 2009; NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 315:1653–1667 [View Article][PubMed]
    [Google Scholar]
  76. Sheng Z., Lewis J. A., Chirico W. J. 2004; Nuclear and nucleolar localization of 18-kDa fibroblast growth factor-2 is controlled by C-terminal signals. J Biol Chem 279:40153–40160 [View Article][PubMed]
    [Google Scholar]
  77. Simpson J. C., Neubrand V. E., Wiemann S., Pepperkok R. 2001; Illuminating the human genome. Histochem Cell Biol 115:23–29[PubMed] [CrossRef]
    [Google Scholar]
  78. Siomi H., Shida H., Maki M., Hatanaka M. 1990; Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 64:1803–1807[PubMed]
    [Google Scholar]
  79. Sirri V., Urcuqui-Inchima S., Roussel P., Hernandez-Verdun D. 2008; Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31 [View Article][PubMed]
    [Google Scholar]
  80. Storck S., Shukla M., Dimitrov S., Bouvet P. 2007; Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 41:125–144 [View Article][PubMed]
    [Google Scholar]
  81. Strang B. L., Boulant S., Coen D. M. 2010; Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 84:1771–1784 [View Article][PubMed]
    [Google Scholar]
  82. Szebeni A., Mehrotra B., Baumann A., Adam S. A., Wingfield P. T., Olson M. O. 1997; Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry 36:3941–3949 [View Article][PubMed]
    [Google Scholar]
  83. Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E. C. 1993; Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457 [View Article][PubMed]
    [Google Scholar]
  84. Wang L., Ren X. M., Xing J. J., Zheng A. C. 2010; The nucleolus and viral infection. Virol Sin 25:151–157 [View Article][PubMed]
    [Google Scholar]
  85. Westman B. J., Lamond A. I. 2011; A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus 2:30–37 [View Article][PubMed]
    [Google Scholar]
  86. Xing J., Wu F., Pan W., Zheng C. 2010; Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. Virus Res 153:71–81 [View Article][PubMed]
    [Google Scholar]
  87. Zolotukhin A. S., Felber B. K. 1999; Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol 73:120–127[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.045963-0
Loading
/content/journal/jmm/10.1099/jmm.0.045963-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error