1887

Abstract

PyrG (CTP synthase) catalyses the conversion of UTP to CTP, an essential step in the pyrimidine metabolic pathway in a variety of bacteria, including those causing community-acquired respiratory tract infections (RTIs). In this study, a luminescence-based ATPase assay of PyrG was developed and used to evaluate the inhibitory activity of 2-(3-[3-oxo-1,2-benzisothiazol-2(3)-yl]phenylsulfonylamino) benzoic acid (compound G1). Compound G1 inhibited PyrG derived from with a 50 % inhibitory concentration value of 0.091 µM, and the inhibitory activity of compound G1 was 13 times higher than that of acivicin (1.2 µM), an established PyrG inhibitor. The results of saturation transfer difference analysis using nuclear magnetic resonance spectroscopy suggested that these compounds compete with ATP and/or UTP for binding to PyrG. Finally, compound G1 was shown to have antimicrobial activity against several different bacteria causing RTIs, such as and , suggesting that it is a prototype chemical compound that could be harnessed as an antimicrobial drug with a novel structure to target bacterial PyrG.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.046052-0
2012-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/9/1280.html?itemId=/content/journal/jmm/10.1099/jmm.0.046052-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Rubin E. J., Novick V. L., Amaya K., Judson N., Mekalanos J. J. 2002; A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A 99:966–971 [View Article][PubMed]
    [Google Scholar]
  2. Brockman R. W., Shaddix S. C., Williams M., Nelson J. A., Rose L. M., Schabel F. M. Jr 1975; The mechanism of action of 3-deazauridine in tumor cells sensitive and resistant to arabinosylcytosine. Ann N Y Acad Sci 255:501–521 [View Article][PubMed]
    [Google Scholar]
  3. Chittur S. V., Klem T. J., Shafer C. M., Davisson V. J. 2001; Mechanism for acivicin inactivation of triad glutamine amidotransferases. Biochemistry 40:876–887 [View Article][PubMed]
    [Google Scholar]
  4. CLSI (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th edn. Approved standard M07–A9. Wayne, PA: Clinical and Laboratory Standards Institute
  5. Endrizzi J. A., Kim H., Anderson P. M., Baldwin E. P. 2004; Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets. Biochemistry 43:6447–6463 [View Article][PubMed]
    [Google Scholar]
  6. Endrizzi J. A., Kim H., Anderson P. M., Baldwin E. P. 2005; Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 44:13491–13499 [View Article][PubMed]
    [Google Scholar]
  7. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A. other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [View Article][PubMed]
    [Google Scholar]
  8. Gerdes S. Y., Scholle M. D., Campbell J. W., Balázsi G., Ravasz E., Daugherty M. D., Somera A. L., Kyrpides N. C., Anderson I. other authors 2003; Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684 [View Article][PubMed]
    [Google Scholar]
  9. Gharehbaghi K., Zhen W., Fritzer-Szekeres M., Szekeres T., Jayaram H. N. 1998; Studies on the antitumor activity and biochemical actions of cyclopentenyl cytosine against human colon carcinoma HT-29 in vitro and in vivo. Life Sci 64:103–112 [View Article][PubMed]
    [Google Scholar]
  10. Hoskins J., Alborn W. E. Jr, Arnold J., Blaszczak L. C., Burgett S., DeHoff B. S., Estrem S. T., Fritz L., Fu D. J. other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [View Article][PubMed]
    [Google Scholar]
  11. Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K. other authors 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240 [View Article][PubMed]
    [Google Scholar]
  12. Lim M. I., Moyer J. D., Cysyk R. I., Marquez V. E. 1984; Cyclopentenyluridine and cyclopentenylcytidine analogues as inhibitors of uridine-cytidine kinase. J Med Chem 27:1536–1538 [View Article][PubMed]
    [Google Scholar]
  13. Long C. W., Pardee A. B. 1967; Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J Biol Chem 242:4715–4721[PubMed]
    [Google Scholar]
  14. Lui M. S., Kizaki H., Weber G. 1982; Biochemical pharmacology of acivicin in rat hepatoma cells. Biochem Pharmacol 31:3469–3473 [View Article][PubMed]
    [Google Scholar]
  15. Meier T. I., Yan D., Peery R. B., McAllister K. A., Zook C., Peng S. B., Zhao G. 2008; Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases. FEBS J 275:5258–5271 [View Article][PubMed]
    [Google Scholar]
  16. Miles B. W., Thoden J. B., Holden H. M., Raushel F. M. 2002; Inactivation of the amidotransferase activity of carbamoyl phosphate synthetase by the antibiotic acivicin. J Biol Chem 277:4368–4373 [View Article][PubMed]
    [Google Scholar]
  17. Payne D. J., Gwynn M. N., Holmes D. J., Pompliano D. L. 2007; Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40 [View Article][PubMed]
    [Google Scholar]
  18. Pereira M. P., Blanchard J. E., Murphy C., Roderick S. L., Brown E. D. 2009; High-throughput screening identifies novel inhibitors of the acetyltransferase activity of Escherichia coli GlmU. Antimicrob Agents Chemother 53:2306–2311 [View Article][PubMed]
    [Google Scholar]
  19. Silver L. L. 2003; Novel inhibitors of bacterial cell wall synthesis. Curr Opin Microbiol 6:431–438 [View Article][PubMed]
    [Google Scholar]
  20. Verschuur A. C., van Gennip A. H., Brinkman J., Voûte P. A., van Kuilenburg A. B. 2000; Cyclopentenyl cytosine induces apoptosis and secondary necrosis in a T-lymphoblastic leukemic cell-line. Adv Exp Med Biol 486:319–325 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.046052-0
Loading
/content/journal/jmm/10.1099/jmm.0.046052-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error