1887

Abstract

Formation of infectious urinary calculi is the most common complication accompanying urinary tract infections by members of the genus . The major factor involved in stone formation is the urease produced by these bacteria, which causes local supersaturation and crystallization of magnesium and calcium phosphates as carbonate apatite [Ca(PO).CO] and struvite (MgNHPO.6HO), respectively. This effect may also be enhanced by bacterial polysaccharides. Macromolecules of such kind contain negatively charged residues that are able to bind Ca and Mg, leading to the accumulation of these ions around bacterial cells and acceleration of the crystallization process. The levels of Ca and Mg ions bound by whole cells were measured, as well as the chemical nature of isolated LPS polysaccharides, and the intensity of the crystallization process was compared in a synthetic urine. The results suggest that the sugar composition of LPS may either enhance or inhibit the crystallization of struvite and apatite, depending on its chemical structure and ability to bind cations. This points to the increased importance of endotoxin in urinary tract infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05161-0
2003-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/6/JM520605.html?itemId=/content/journal/jmm/10.1099/jmm.0.05161-0&mimeType=html&fmt=ahah

References

  1. Ames B. H, Dubin D. T. 1960; The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 235:769–775
    [Google Scholar]
  2. Arbatsky N. P, Shashkov A. S, Widmalm G, Knirel Y. A, Zych K, Sidorczyk Z. 1997; Structure of the O-specific polysaccharide of Proteus penneri strain 25 containing N -(l-alanyl) and multiple O-acetyl groups in a tetrasaccharide repeating unit. Carbohydr Res 298:229–235 [CrossRef]
    [Google Scholar]
  3. Bartodziejska B, Shashkov A. S, Babicka D, Grachev A. A, Torzewska A, Paramonov N. A, Chernyak A. Y, Róz2alski A, Knirel Y. A. 1998; Structural and serological studies on a new acidic O-specific polysaccharide of Proteus vulgaris O32. Eur J Biochem 256:488–493 [CrossRef]
    [Google Scholar]
  4. Beynon L. M, Dumanski A. J, McLean R. J. C, McLean L. L, Richards J. C, Perry M. B. 1992; Capsule structure of Proteus mirabilis (ATCC 49565). J Bacteriol 174:2172–2177
    [Google Scholar]
  5. Bihl G, Meyers A. 2001; Recurrent renal stone disease – advances in pathogenesis and clinical management. Lancet 358:651–656 [CrossRef]
    [Google Scholar]
  6. Boelke E, Jehle P. M, Storck M, Orth K, Schams S, Abendroth D. 2001; Urinary endotoxin excretion and urinary tract infection following kidney transplantation. Transpl Int 14:307–310 [CrossRef]
    [Google Scholar]
  7. Clapham L, McLean R. J. C, Nickel J. C, Downey J, Costerton J. W. 1990; The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. J Crystal Growth 104:475–484 [CrossRef]
    [Google Scholar]
  8. Coker C, Poore C. A, Li X, Mobley H. L. T. 2000; Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2:1497–1505 [CrossRef]
    [Google Scholar]
  9. Dumanski A. J, Hedelin H, Edin-Liljegren A, Beauchemin D, McLean R. J. C. 1994; Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi. Infect Immun 62:2998–3003
    [Google Scholar]
  10. Gleeson M. J, Griffith D. P. 1993; Struvite calculi. Br J Urol 71:503–511 [CrossRef]
    [Google Scholar]
  11. Griffith D. P, Musher D. M, Itin C. 1976; Urease.The primary cause of infection-induced urinary stones. Invest Urol 13:346–350
    [Google Scholar]
  12. Gygi D, Rahman M. M, Lai H.-C, Carlson R, Guard-Petter J, Hughes C. 1995; A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis . Mol Microbiol 17:1167–1175 [CrossRef]
    [Google Scholar]
  13. Kaca W, Literacka E, Sjöholm A. G, Weintraub A. 2000; Complement activation by Proteus mirabilis negatively charged lipopolysaccharides. J Endotoxin Res 6:223–234 [CrossRef]
    [Google Scholar]
  14. Knirel Y. A, Vinogradov E. V, Shashkov A. S, Sidorczyk Z, Róz2alski A, Radziejewska-Lebrecht J, Kaca W. 1993; Structural study of O-specific polysaccharides of Proteus . J Carbohydr Chem 12:379–414 [CrossRef]
    [Google Scholar]
  15. Kramer G, Klingler H. C, Steiner G. E. 2000; Role of bacteria in the development of kidney stones. Curr Opin Urol 10:35–38 [CrossRef]
    [Google Scholar]
  16. Lerner S. P, Gleeson M. J, Griffith D. P. 1989; Infection stones. J Urol 141:753–758
    [Google Scholar]
  17. Lowry J. O. H, Rosenbrough N. J, Farr A. L, Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:260–265
    [Google Scholar]
  18. McAleer I. M, Kaplan G. W, Bradley J. S, Caroll S. F. 2002; Staghorn calculus endotoxin expression in sepsis. Urology 59:601– 601
    [Google Scholar]
  19. McLean R. J. C, Beveridge T. J. 1990; Metal binding capacity of bacterial surface and their ability to form mineralized aggregates. In Microbial Mineral Recovery pp 185–222 Edited by Ehrlich H. L., Brierley C. L. New York: McGraw–Hill;
    [Google Scholar]
  20. McLean R. J. C, Nickel J. C, Cheng K.-J, Costerton J. W. 1988; The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol 16:37–79 [CrossRef]
    [Google Scholar]
  21. McLean R. J. C, Nickel J. C, Beveridge T. J, Costerton J. W. 1989; Observations of the ultrastructure of infected kidney stones. J Med Microbiol 29:1–7 [CrossRef]
    [Google Scholar]
  22. McLean R. J. C, Fortin D, Brown D. A. 1996; Microbial metal-binding mechanisms and their relation to nuclear waste disposal. Can J Microbiol 42:392–400 [CrossRef]
    [Google Scholar]
  23. Perry M. B, MacLean L. L. 1994; The structure of the polysaccharide produced by Proteus vulgaris (ATCC 49990). Carbohydr Res 253:257–263 [CrossRef]
    [Google Scholar]
  24. Radziejewska-Lebrecht J, Shashkov A. S, Vinogradov E. V. 9 other authors 1995; Structure and epitope characterisation of the O-specific polysaccharide of Proteus mirabilis O28 containing amides of d-galacturonic acid with l-serine and l-lysine. Eur J Biochem 230:705–712 [CrossRef]
    [Google Scholar]
  25. Rodman J. S. 1999; Struvite stones. Nephron 81:Suppl. 150–59 [CrossRef]
    [Google Scholar]
  26. Róz2alski A, Sidorczyk Z, Kotełko K. 1997; Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89
    [Google Scholar]
  27. Róz2alski A, Torzewska A, Bartodziejska B. 7 other authors 2002; Chemical structure, antigenic specificity and role in the pathogenicity of lipopolysaccharide (LPS, endotoxin) on Proteus vulgaris bacteria's example. Wiad Chem 56:585–604 (in Polish
    [Google Scholar]
  28. Warren J. W. 1996; Clinical presentations and epidemiology of urinary tract infections. In Urinary Tract Infection: Molecular Pathogenesis and Clinical Management . pp 3–27 Edited by Mobley H. L. T., Warren J. W. Washington, DC: American Society for Microbiology;
  29. Weatherburn M. W. 1967; Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–973 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05161-0
Loading
/content/journal/jmm/10.1099/jmm.0.05161-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error