1887

Abstract

Naturally occurring antimicrobial peptides have emerged as alternative classes of antimicrobials. In general, these antimicrobial peptides exhibit selectivity for prokaryotes and minimize the problems of engendering microbial resistance. As an alternative method to search for more effective broad-spectrum peptide antimicrobials, investigators have developed peptide libraries by using synthetic combinatorial technology. A novel decapeptide, KKVVFKVKFK (KSL), has been identified that shows a broad range of antibacterial activity. The purpose of this study was to test the efficacy of this antimicrobial peptide in killing selected strains of oral pathogens and resident saliva bacteria collected from human subjects. Cytotoxic activity of KSL against mammalian cells and the structural features of this decapeptide were also investigated, the latter by using two-dimensional NMR in aqueous and DMSO solutions. MICs of KSL for the majority of oral bacteria tested ranged from 3 to 100 μg ml. Minimal bactericidal concentrations of KSL were, in general, within one to two dilutions of the MICs. KSL exhibited an ED (the dose at which 99 % killing was observed after 15 min at 37 °C) of 6.25 μg ml against selected strains of , , and . In addition, KSL damaged bacterial cell membranes and caused 1.05 log units reduction of viability counts of saliva bacteria. toxicity studies showed that KSL, at concentrations up to 1 mg ml, did not induce cell death or compromise the membrane integrity of human gingival fibroblasts. NMR studies suggest that KSL adopts an α-helical structure in DMSO solution, which mimics the polar aprotic membrane environment, whereas it remains unstructured in aqueous medium. This study shows that KSL may be a useful antimicrobial agent for inhibiting the growth of oral bacteria that are associated with caries development and early plaque formation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05286-0
2003-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/12/JM521208.html?itemId=/content/journal/jmm/10.1099/jmm.0.05286-0&mimeType=html&fmt=ahah

References

  1. Bateman A, Singh A, Shustik C, Mars W. M, Solomon S. 1991; The isolation and identification of multiple forms of the neutrophil granule peptides from human leukemic cells. J Biol Chem 266:7524–7530
    [Google Scholar]
  2. Blondelle S. E, Houghten R. A. 1996; Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol 14:60–65 [CrossRef]
    [Google Scholar]
  3. Blondelle S. E, Takahashi E, Weber P. A, Houghten R. A. 1994; Identification of antimicrobial peptides by using combinatorial libraries made up of unnatural amino acids. Antimicrob Agents Chemother 38:2280–2286 [CrossRef]
    [Google Scholar]
  4. Blondelle S. E, Pérez-Payá E, Houghten R. A. 1996a; Synthetic combinatorial libraries: novel discovery strategy for identification of antimicrobial agents. Antimicrob Agents Chemother 40:1067–1071
    [Google Scholar]
  5. Blondelle S. E, Takahashi E, Houghten R. A, Pérez-Payá E. 1996b; Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem J 313:141–147
    [Google Scholar]
  6. Boggiano C, Reixach N, Pinilla C, Blondelle S. E. 2003; Successful identification of novel agents to control infectious diseases from screening mixture-based peptide combinatorial libraries in complex cell-based bioassays. Biopolymers 71:103–116 [CrossRef]
    [Google Scholar]
  7. Boman H. G. 1991; Antibacterial peptides: key components needed in immunity. Cell 65:205–207 [CrossRef]
    [Google Scholar]
  8. Boman H. G. 1998; Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 48:15–25 [CrossRef]
    [Google Scholar]
  9. Bowden G. H. W. 1991; Which bacteria are cariogenic in humans?. In Risk Markers for Oral Diseases vol. 1 pp 266–286 Edited by Johnson N. W. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  10. Chen J, Falla T. J, Liu H. 9 other authors 2000; Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Biopolymers 55:88–98 [CrossRef]
    [Google Scholar]
  11. Davies J. 1994; Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382 [CrossRef]
    [Google Scholar]
  12. Decker T, Lohmann-Matthes M. L. 1988; A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69 [CrossRef]
    [Google Scholar]
  13. Dyson H. J, Wright P. E. 1991; Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem 20:519–538 [CrossRef]
    [Google Scholar]
  14. Elsbach P. 2003; What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses?. J Clin Invest 111:1643–1645 [CrossRef]
    [Google Scholar]
  15. Friedrich C, Scott M. G, Karunaratne N, Yan H, Hancock R. E. W. 1999; Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43:1542–1548
    [Google Scholar]
  16. Fuchs P. C, Barry A. L, Brown S. D. 1998; In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother 42:1213–1216
    [Google Scholar]
  17. Gibbons R. J. 1996; Role of adhesion in microbial colonization of host tissues: a contribution of oral microbiology. J Dent Res 75:866–870 [CrossRef]
    [Google Scholar]
  18. Guthmiller J. M, Vargas K. G, Srikantha R, Schomberg L. L, Weistroffer P. L, McCray P. B Jr, Tack B. F. 2001; Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother 45:3216–3219 [CrossRef]
    [Google Scholar]
  19. Hancock R. E. W. 1997a; Antibacterial peptides and the outer membranes of Gram-negative bacilli. J Med Microbiol 46:1–3 [CrossRef]
    [Google Scholar]
  20. Hancock R. E. W. 1997b; Peptide antibiotics. Lancet 349:418–422 [CrossRef]
    [Google Scholar]
  21. Hancock R. E. W, Lehrer R. 1998; Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88 [CrossRef]
    [Google Scholar]
  22. Hancock R. E. W, Chapple D. S. 1999; Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323
    [Google Scholar]
  23. Hancock R. E. W, Rozek A. 2002; Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149 [CrossRef]
    [Google Scholar]
  24. Hancock R. E. W, Falla T, Brown M. 1995; Cationic bactericidal peptides. Adv Microb Physiol 37:135–175
    [Google Scholar]
  25. Helmerhorst E. J, van't Hof W, Veerman E. C. I, Simoons-Smit I, Nieuw Amerongen A. V. 1997; Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326:39–45
    [Google Scholar]
  26. Helmerhorst E. J, Hodgson R, van't Hof W, Veerman E. C. I, Allison C, Nieuw Amerongen A. V. 1999; The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 78:1245–1250 [CrossRef]
    [Google Scholar]
  27. Henderson B, Poole S, Wilson M. editors 1998 Bacteria-Cytokine Interactions in Health and Disease London: Portland Press;
    [Google Scholar]
  28. Hong S. Y, Oh J. E, Kwon M, Choi M. J, Lee J. H, Lee B. L, Moon H. M, Lee K. H. 1998; Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob Agents Chemother 42:2534–2541
    [Google Scholar]
  29. Kaiser E, Colescott R. L, Bossinger C. D, Cook P. I. 1970; Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598 [CrossRef]
    [Google Scholar]
  30. Kilian M, Mikkelsen L, Henrichsen J. 1989; Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp.nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol 39:471–484 [CrossRef]
    [Google Scholar]
  31. Koczulla A. R, Bals R. 2003; Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389–406 [CrossRef]
    [Google Scholar]
  32. Koczulla R, von Degenfeld G, Kupatt C. 17 other authors 2003; An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672 [CrossRef]
    [Google Scholar]
  33. Kolenbrander P. E, London J. 1992; Ecological significance of coaggregation among oral bacteria. Adv Microb Ecol 12:183–217
    [Google Scholar]
  34. Kolenbrander P. E, Ganeshkumar N, Cassels F. J, Hughes C. V. 1993; Coaggregation: specific adherence among human oral plaque bacteria. FASEB J 7:406–413
    [Google Scholar]
  35. Lee I. H, Cho Y, Lehrer R. I. 1997; Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 65:2898–2903
    [Google Scholar]
  36. Lisle J. T, Stewart P. S, McFeters G. A. 1999; Fluorescent probes applied to physiological characterization of bacterial biofilms. Methods Enzymol 310:166–178
    [Google Scholar]
  37. Loesche W. J, Syed S. A. 1978; Bacteriology of human experimental gingivitis: effect of plaque and gingivitis score. Infect Immun 21:830–839
    [Google Scholar]
  38. MacKay B. J, Denepitiya L, Iacono V. J, Krost S. B, Pollock J. J. 1984; Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans . Infect Immun 44:695–701
    [Google Scholar]
  39. Mickels N, McManus C, Massaro J. 7 other authors 2001; Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis. J Clin Periodontol 28:404–410 [CrossRef]
    [Google Scholar]
  40. Miyasaki K. T, Bodeau A. L, Selsted M. E, Ganz T, Lehrer R. I. 1990; Killing of oral, gram-negative, facultative bacteria by the rabbit defensin, NP-1. Oral Microbiol Immunol 5:315–319 [CrossRef]
    [Google Scholar]
  41. Miyasaki K. T, Iofel R, Lehrer R. I. 1997; Sensitivity of periodontal pathogens to the bactericidal activity of synthetic protegrins, antibiotic peptides derived from porcine leukocytes. J Dent Res 76:1453–1459 [CrossRef]
    [Google Scholar]
  42. Miyasaki K. T, Iofel R, Oren A, Huynh T, Lehrer R. I. 1998; Killing of Fusobacterium nucleatum , Porphyromonas gingivalis and Prevotella intermedia by protegrins. J Periodont Res 33:91–98
    [Google Scholar]
  43. Mosca D. A, Hurst M. A, So W, Viajar B. S. C, Fujii C. A, Falla T. J. 2000; IB-367, a protegrin peptide with in vitro and in vivo activities against the microflora associated with oral mucositis. Antimicrob Agents Chemother 44:1803–1808 [CrossRef]
    [Google Scholar]
  44. Mosmann T. 1983; Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63 [CrossRef]
    [Google Scholar]
  45. Murakami M, Ohtake T, Dorschner R. A, Gallo R. L. 2002; Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850 [CrossRef]
    [Google Scholar]
  46. Nizet V, Ohtake T, Lauth X. 7 other authors 2001; Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457 [CrossRef]
    [Google Scholar]
  47. Oh J. E, Hong S. Y, Lee K. H. 1999; Structure-activity relationship study: short antimicrobial peptides. J Pept Res 53:41–46 [CrossRef]
    [Google Scholar]
  48. Pardi A, Billeter M, Wuthrich K. 1984; Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein.Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol 180:741–751 [CrossRef]
    [Google Scholar]
  49. Raj P. A, Edgerton M, Levine M. J. 1990; Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem 265:3898–3905
    [Google Scholar]
  50. Raj P. A, Marcus E, Edgerton M. 1996; Delineation of an active fragment and poly(l-proline) II conformation for candidacidal activity of bactenecin 5. Biochemistry 35:4314–4325 [CrossRef]
    [Google Scholar]
  51. Raj P. A, Marcus E, Sukumaran D. K. 1998; Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45:51–67 [CrossRef]
    [Google Scholar]
  52. Raj P. A, Karunakaran T, Sukumaran D. K. 2000a; Synthesis, microbicidal activity, and solution structure of the dodecapeptide from bovine neutrophils. Biopolymers 53:281–292 [CrossRef]
    [Google Scholar]
  53. Raj P. A, Antonyraj K. J, Karunakaran T. 2000b; Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem J 347:633–641 [CrossRef]
    [Google Scholar]
  54. Rothstein D. M, Spacciapoli P, Tran L. T, Xu T, Roberts F. D, Dalla Serra M, Buxton D. K, Oppenheim F. G, Friden P. 2001; Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45:1367–1373 [CrossRef]
    [Google Scholar]
  55. Schutze G. E, Kaplan S. L, Jacobs R. F. 1994; Resistant Pneumococcus : a worldwide problem. Infection 22:233–237 [CrossRef]
    [Google Scholar]
  56. Slots J, Bragd L, Wikström M, Dahlén G. 1986; The occurrence of Actinobacillus actinomycetemcomitans , Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 13:570–577 [CrossRef]
    [Google Scholar]
  57. Socransky S. S, Haffajee A. D, Cugini M. A, Smith C, Kent R. L. Jr 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144 [CrossRef]
    [Google Scholar]
  58. Summey D. L, Jordan H. V. 1974; Characterization of bacteria isolated from human root surface carious lesions. J Dent Res 53:343–351 [CrossRef]
    [Google Scholar]
  59. Tamamura H, Murakami T, Horiuchi S. 7 other authors 1995; Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull (Tokyo) 43:853–858 [CrossRef]
    [Google Scholar]
  60. Tanaka D, Miyasaki K. T, Lehrer R. I. 2000; Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp.to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. Oral Microbiol Immunol 15:226–231 [CrossRef]
    [Google Scholar]
  61. van Houte J. 1994; Role of micro-organisms in caries etiology. J Dent Res 73:672–681
    [Google Scholar]
  62. Wade D, Andreu D, Mitchell S. A, Silveira A. M, Boman A, Boman H. G, Merrifield R. B. 1992; Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40:429–436
    [Google Scholar]
  63. Wüthrich K. 1986 NMR of Proteins and Nucleic Acids New York: Wiley;
    [Google Scholar]
  64. Yeaman M. R, Yount N. Y. 2003; Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55 [CrossRef]
    [Google Scholar]
  65. Zasloff M. 1992; Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 4:3–7 [CrossRef]
    [Google Scholar]
  66. Zasloff M. 2002; Antimicrobial peptides of multicellular organisms. Nature 415:389–395 [CrossRef]
    [Google Scholar]
  67. Zhao C, Liu L, Lehrer R. I. 1994; Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett 346:285–288 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05286-0
Loading
/content/journal/jmm/10.1099/jmm.0.05286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error