1887

Abstract

In order to determine whether there is an association between the presence of Epstein–Barr virus (EBV) and mycosis fungoides (MF) disease progression, PCR was performed to detect the EBV status of 20 MF patients; six EBV-positive patients were found. EBV variants may differ in their biological properties, such as their ability to transform cells; therefore, the ability of these variants to immortalize B cells was analysed. Six continuously growing cell lines were obtained from prolonged cultures of unstimulated peripheral blood mononuclear cells that were taken from the six EBV-positive patients with MF. In order to characterize the EBV strains, EBNA-2 and LMP-1/LMP-2 gene polymorphisms in the six cell lines were also analysed. All patients were followed up for 10 years and it was noticed that EBV-positive patients had a poor prognosis with rapid disease progression and high mortality rates, compared to EBV-negative patients. EBV may therefore constitute a co-factor that accelerates the progression of disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05439-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/JM530505.html?itemId=/content/journal/jmm/10.1099/jmm.0.05439-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos I., Hummel M., Kaudewitz P., Korbjuhn P., Leoncini L., Stein H. 1996; Low incidence of Epstein-Barr virus presence in primary cutaneous T-cell lymphoproliferations. Br J Dermatol 134:276–281 [CrossRef]
    [Google Scholar]
  2. Barozzi P., Luppi M., Cagossi K., Maiorana A., Marasca R., Artusi T., Poggi S., Pileri S. A., Torelli G. 1999; The oncogenic 30 and 69 bp deletion variants of the EBV LMP-1 gene are common in HIV-negative lymphoproliferations, both malignant and benign. Ann Oncol 10:467–469 [CrossRef]
    [Google Scholar]
  3. Berger C., van Baarle D., Kersten M. J., Klein M. R., Al-Homsi A. S., Dunn B., McQuain C., van Oers R., Knecht H. 1999; Carboxy terminal variants of Epstein-Barr virus-encoded latent membrane protein 1 during long-term human immunodeficiency virus infection: reliable markers for individual strain identification. J Infect Dis 179:240–244 [CrossRef]
    [Google Scholar]
  4. Busch L. K., Bishop G. A. 1999; The EBV transforming protein, latent membrane protein 1, mimics and cooperates with CD40 signaling in B lymphocytes. J Immunol 162:2555–2561
    [Google Scholar]
  5. Chang Y. T., Liu H. N., Chen C. L., Chow K. C. 1998; Detection of Epstein-Barr virus and HTLV-I in T-cell lymphomas of skin in Taiwan. Am J Dermatopathol 20:250–254 [CrossRef]
    [Google Scholar]
  6. Cheung S. T., Leung S. F., Lo K. W., Chiu K. W., Tam J. S., Fok T. F., Johnson P. J., Lee J. C., Huang D. P. 1998; Specific latent membrane protein 1 gene sequences in type 1 and type 2 Epstein-Barr virus from nasopharyngeal carcinoma in Hong Kong. Int J Cancer 76:399–406 [CrossRef]
    [Google Scholar]
  7. Chiang A. K., Wong K. Y., Liang A. C. T., Srivastava G. 1999; Comparative analysis of Epstein-Barr virus gene polymorphism in nasal T/NK-cell lymphomas and normal nasal tissues: implications on virus strain selection in malignancy. Int J Cancer 80:356–364 [CrossRef]
    [Google Scholar]
  8. Dreno B., Celerier P., Fleischmann M., Bureau B., Litoux P. 1994; Presence of Epstein-Barr virus in cutaneous lesions of mycosis fungoides and Sézary syndrome. Acta Derm Venereol 74:355–357
    [Google Scholar]
  9. Erickson K. D., Martin J. M. 1997; Early detection of the lytic LMP-1 protein in EBV-infected B-cells suggests its presence in the virion. Virology 234:1–13 [CrossRef]
    [Google Scholar]
  10. Erickson K. D., Martin J. M. 2000; The late lytic LMP-1 protein of Epstein-Barr virus can negatively regulate LMP-1 signaling. J Virol 74:1057–1060 [CrossRef]
    [Google Scholar]
  11. Erickson K. D., Berger C., Coffin W. F. III, Schiff E., Walling D. M., Martin J. M. 2003; Unexpected absence of the Epstein-Barr virus (EBV) lyLMP-1 open reading frame in tumor virus isolates: lack of correlation between Met129 status and EBV strain identity. J Virol 77:4415–4422 [CrossRef]
    [Google Scholar]
  12. Erkek E., Sahin S., Atakan N., Kocagöz T., Olut A., Gököz A. 2001; Examination of mycosis fungoides for the presence of Epstein-Barr virus and human herpesvirus-6 by polymerase chain reaction. J Eur Acad Dermatol Venereol 15:422–426 [CrossRef]
    [Google Scholar]
  13. Fruehling S., Longnecker R. 1997; The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251 [CrossRef]
    [Google Scholar]
  14. Fruehling S., Swart R., Dolwick K. M., Kremmer E., Longnecker R. 1998; Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. J Virol 72:7796–7806
    [Google Scholar]
  15. Glukhov A. I., Gordeev S. A., Vinogradov S. V., Kiselev V. I., Kramarov V. M., Kiselev O. I., Severin E. S. 1990; Amplification of DNA sequences of Epstein-Barr and human immunodeficiency viruses using DNA-polymerase from Thermus thermophilus . Mol Cell Probes 4:435–443 [CrossRef]
    [Google Scholar]
  16. Heald P. W., Yan S. L., Edelson R. L., Tigelaar R., Picker L. J. 1993; Skin-selective lymphocyte homing mechanisms in the pathogenesis of leukemic cutaneous T-cell lymphoma. J Invest Dermatol 101:222–226 [CrossRef]
    [Google Scholar]
  17. Hoppe R. T., Medeiros L. J., Warnke R. A., Wood G. S. 1995; CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol 32:448–453 [CrossRef]
    [Google Scholar]
  18. Ikeda M., Ikeda A., Longnecker R. 2001; PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 75:5711–5718 [CrossRef]
    [Google Scholar]
  19. Iwatsuki K., Ohtsuka M., Harada H., Han G., Kaneko F. 1997; Clinicopathologic manifestations of Epstein-Barr virus-associated cutaneous lymphoproliferative disorders. Arch Dermatol 133:1081–1086 [CrossRef]
    [Google Scholar]
  20. Khanna R., Burrows S. R., Nicholls J., Poulsen L. M. 1998; Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28:451–458 [CrossRef]
    [Google Scholar]
  21. Kingma D. W., Weiss W. B., Jaffe E. S., Kumar S., Frekko K., Raffeld M. 1996; Epstein-Barr virus latent membrane protein-1 oncogene deletions: correlation with malignancy in Epstein-Barr virus-associated lymphoproliferative disorders and malignant lymphomas. Blood 88:242–251
    [Google Scholar]
  22. Knecht H., Bachmann E., Joske D. J. L., Sahli R., Eméry-Goodman A., Casanova J. L., Zilic M., Bachmann F., Odermatt B. F. 1993; Molecular analysis of the LMP (latent membrane protein) oncogene in Hodgkin's disease. Leukemia 7:580–585
    [Google Scholar]
  23. Lee P. Y. P., Charley M., Tharp M., Jegasothy B. V., Deng J. S. 1990; Possible role of Epstein-Barr virus infection in cutaneous T-cell lymphomas. J Invest Dermatol 95:309–312 [CrossRef]
    [Google Scholar]
  24. Lorincz A. L. 1996; Cutaneous T-cell lymphoma (mycosis fungoides). Lancet 347:871–876 [CrossRef]
    [Google Scholar]
  25. Manca N., Piacentini E., Gelmi M. & 8 other authors; 1994; Persistence of human T cell lymphotropic virus type 1 (HTLV-1) sequences in peripheral blood mononuclear cells from patients with mycosis fungoides. J Exp Med 180:1973–1978 [CrossRef]
    [Google Scholar]
  26. Miller W. E., Edwards R. H., Walling D. M., Raab-Traub N. 1994; Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol 75:2729–2740 [CrossRef]
    [Google Scholar]
  27. Pancake B. A., Zucker-Franklin D. 1996; The difficulty of detecting HTLV-1 proviral sequences in patients with mycosis fungoides. J Acquir Immune Defic Syndr Hum Retrovirol 13:314–319 [CrossRef]
    [Google Scholar]
  28. Park C. K., Ko Y. H. 1996; Detection of EBER nuclear RNA in T-cell lymphomas involving the skin –an in situ hybridization study. Br J Dermatol 134:488–493 [CrossRef]
    [Google Scholar]
  29. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol 61:1310–1317
    [Google Scholar]
  30. Shimakage M., Sasagawa T., Kawahara K., Yutsudo M., Kusuoka H., Kozuka T. 2001; Expression of Epstein-Barr virus in cutaneous T-cell lymphoma including mycosis fungoides. Int J Cancer 92:226–231 [CrossRef]
    [Google Scholar]
  31. Siegel R. S., Pandolfino T., Guitart J., Rosen S., Kuzel T. M. 2000; Primary cutaneous T-cell lymphoma: review and current concepts. J Clin Oncol 18:2908–2925
    [Google Scholar]
  32. Sung N. S., Edwards R. H., Seillier-Moiseiwitsch F., Perkins A. G., Zeng Y., Raab-Traub N. 1998; Epstein-Barr virus strain variation in nasopharyngeal carcinoma from the endemic and non-endemic regions of China. Int J Cancer 76:207–215 [CrossRef]
    [Google Scholar]
  33. Walling D. M., Shebib N., Weaver S. C., Nichols C. M., Flaitz C. M., Webster-Cyriaque J. 1999; The molecular epidemiology and evolution of Epstein-Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis 179:763–774 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05439-0
Loading
/content/journal/jmm/10.1099/jmm.0.05439-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error