1887

Abstract

Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055749-0
2013-11-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/11/1635.html?itemId=/content/journal/jmm/10.1099/jmm.0.055749-0&mimeType=html&fmt=ahah

References

  1. Ajeagah G., Cioroi M., Praisler M., Constantin O., Palela M., Bahrim G. 2012; Bacteriological and environmental characterisation of the water quality in the Danube River Basin in the Galati area of Romania. African Journal of Microbiology Research 6:292–301
    [Google Scholar]
  2. Baggesen D. L., Sandvang D., Aarestrup F. M. 2000; Characterization of Salmonella enterica serovar Typhimurium DT104 isolated from Denmark and comparison with isolates from Europe and the United States. J Clin Microbiol 38:1581–1586[PubMed]
    [Google Scholar]
  3. Baker D. A., Smitherman R. O., McCaskey T. A. 1983; Longevity of Salmonella typhimurium in Tilapia aurea and water from pools fertilized with swine waste. Appl Environ Microbiol 45:1548–1554[PubMed]
    [Google Scholar]
  4. Bayoumi Hamuda H. E. A. F., Patkó I. 2011; Variations in water quality of Danube river at Budapest City. Óbuda University e‐Bulletin 2:1
    [Google Scholar]
  5. Bayoumi Hamuda H. E. A. F., Patko I. 2012; Ecological monitoring of Danube water quality in Budapest region. Am J Environ Sci 8:202–211 [View Article]
    [Google Scholar]
  6. Besemer K., Moeseneder M. M., Arrieta J. M., Herndl G. J., Peduzzi P. 2005; Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Appl Environ Microbiol 71:609–620 [View Article][PubMed]
    [Google Scholar]
  7. Bonetta S., Borelli E., Bonetta S., Conio O., Palumbo F., Carraro E. 2011; Development of a PCR protocol for the detection of Escherichia coli O157:H7 and Salmonella spp. in surface water. Environ Monit Assess 177:493–503 [View Article][PubMed]
    [Google Scholar]
  8. Chakraborty S., Khanam J., Takeda Y., Nair G. B. 1999; Application of PCR for detection of toxigenic Vibrio cholerae O1 in water samples during an outbreak of cholera. Trans R Soc Trop Med Hyg 93:527–528 [View Article][PubMed]
    [Google Scholar]
  9. Chomvarin C., Namwat W., Wongwajana S., Alam M., Thaew-Nonngiew K., Sinchaturus A., Engchanil C. 2007; Application of duplex-PCR in rapid and reliable detection of toxigenic Vibrio cholerae in water samples in Thailand. J Gen Appl Microbiol 53:229–237 [View Article][PubMed]
    [Google Scholar]
  10. Colombo M. M., Mastrandrea S., Leite F., Santona A., Uzzau S., Rappelli P., Pisano M., Rubino S., Cappuccinelli P. 1997; Tracking of clinical and environmental Vibrio cholerae O1 strains by combined analysis of the presence of toxin cassette, plasmid content and ERIC PCR. FEMS Immunol Med Microbiol 19:33–45 [View Article][PubMed]
    [Google Scholar]
  11. Colwell R. R. 1993; Nonculturable but still viable and potentially pathogenic. Zentralbl Bakteriol 279:154–156 [View Article][PubMed]
    [Google Scholar]
  12. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [View Article][PubMed]
    [Google Scholar]
  13. Colwell R. R. 2000; Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125 [View Article][PubMed]
    [Google Scholar]
  14. Colwell R. R., Kaper J., Joseph S. W. 1977; Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396[PubMed] [CrossRef]
    [Google Scholar]
  15. Damian M., Koblavi S., Carle I., Nacescu N., Grimont F., Ciufecu C., Grimont P. A. D. 1998; Molecular characterization of Vibrio cholerae O1 strains isolated in Romania. Res Microbiol 149:745–755 [View Article][PubMed]
    [Google Scholar]
  16. Davies R. H. 2001; Salmonella typhimurium DT104: has it had its day?. In Pract 23:342–351 [View Article]
    [Google Scholar]
  17. Dondero N. C., Thomas C. T., Khare M., Timoney J. F., Fukui G. M. 1977; Salmonella in surface waters of central New York state. Appl Environ Microbiol 33:791–801[PubMed]
    [Google Scholar]
  18. Duris J. W., Haack S. K., Fogarty L. R. 2009; Gene and antigen markers of shiga-toxin producing E. coli from Michigan and Indiana river water: occurrence and relation to recreational water quality criteria. J Environ Qual 38:1878–1886 [View Article][PubMed]
    [Google Scholar]
  19. Farnleitner A. H., Kirschner A. K. T., Zechmeister G., Kavka T. C., Mach R. L. 2001; Untersuchungstechniken in der mikrobiologischen Analyse von Wasser und Gewassern: Staus Quo und Perspektiven. ÖWAV Schriftenreihe Heft 150:125–154
    [Google Scholar]
  20. Faruque S. M., Albert M. J., Mekalanos J. J. 1998; Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. . Microbiol Mol Biol Rev 62:1301–1314[PubMed]
    [Google Scholar]
  21. Feder I., Nietfeld J. C., Galland J., Yeary T., Sargeant J. M., Oberst R., Tamplin M. L., Luchansky J. B. 2001; Comparison of cultivation and PCR-hybridization for detection of Salmonella in porcine fecal and water samples. J Clin Microbiol 39:2477–2484 [View Article][PubMed]
    [Google Scholar]
  22. Fey A., Eichler S., Flavier S., Christen R., Höfle M. G., Guzmán C. A. 2004; Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl Environ Microbiol 70:3618–3623 [View Article][PubMed]
    [Google Scholar]
  23. Helmer R., Hespanhol I. 1997 Water Pollution Control - a Guide to the Use of Water Quality Management Principles. Published on behalf of the United Nations Environment Programme, the Water Supply & Sanitation Collaborative Council and the World Health Organization by E & F Spon London: UNESCO, WHO & UNEP;
  24. Huq A., Colwell R. R. 1994; Vibrios in the environment: viable but nonculturable Vibrio cholerae . In Vibrio Cholerae and Cholera: Molecular to Global Perspectives Edited by Wachsmuth P. A., Blake P. A., Olsvik O. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Huq A., Colwell R. R. 1996; Vibrios in the marine and estuarine environment: tracking Vibrio cholerae. . Ecosyst Health 2:198–214
    [Google Scholar]
  26. Huq A., Colwell R. R., Chowdhury M. A., Xu B., Moniruzzaman S. M., Islam M. S., Yunus M., Albert M. J. 1995; Coexistence of Vibrio cholerae O1 and O139 Bengal in plankton in Bangladesh. Lancet 345:1249 [View Article][PubMed]
    [Google Scholar]
  27. Huq A., Sack R. B., Colwell R. R. 2001; Cholera and global ecosystems. In Ecosystems Change and Public Health: a Global Perspective Edited by Aron J. L., Patz J. A. Baltimore, MD: Johns Hopkins University Press;
    [Google Scholar]
  28. Islam M. S., Drasar B. S., Sack R. B. 1994; The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J Diarrhoeal Dis Res 12:87–96[PubMed]
    [Google Scholar]
  29. Israil A., Nacescu N., Cedru C. L., Ciufecu C., Damian M. 1998; Changes in Vibrio cholerae O1 strains isolated in Romania during 1977-95. Epidemiol Infect 121:253–258 [View Article][PubMed]
    [Google Scholar]
  30. Janousková J., Krcméry V., Kadlecová O. 1975; Salmonellae with antibiotic resistance and R plasmids in Danube River. Zentralbl Bakteriol [Orig A] 233:495–504[PubMed]
    [Google Scholar]
  31. Kampelmacher E., Van Noorle Jansen L. M. 1970; Salmonella – its presence in and removal from a wastewater system. J Water Pollut Control Fed 42:2069–2073
    [Google Scholar]
  32. Kapley A., Purohit H. J. 2001; Detection of etiological agent for cholera by PCR protocol. Med Sci Monit 7:242–245[PubMed]
    [Google Scholar]
  33. Karaolis D. K. R., Kaper J. B. 1999; Pathogenicity islands and other mobile virulence elements of Vibrio cholerae . In Pathogenicity Islands and Other Mobile Virulence Elements Edited by Kaper J. B., Hacker J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Kariuki S., Gilks C., Kimari J., Muyodi J., Waiyaki P., Hart C. A. 1999; Analysis of Salmonella enterica serotype Typhimurium by phage typing, antimicrobial susceptibility and pulsed-field gel electrophoresis. J Med Microbiol 48:1037–1042 [View Article][PubMed]
    [Google Scholar]
  35. Kavka G. G., Kasimir D., Farnleitner A. H. 2006; Microbiological water quality of the River Danube (km 2581 – km 15): longitudinal variation of pollution as determined by standard parameters. In Proceedings of the 36th International Conference of the IAD pp. 415–421 International Association of Danube Research
    [Google Scholar]
  36. Kirschner A. K., Kavka G. G., Velimirov B., Mach R. L., Sommer R., Farnleitner A. H. 2009; Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Water Res 43:3673–3684 [View Article][PubMed]
    [Google Scholar]
  37. Kolarević S., Knežević-Vukčević J., Paunović M., Tomović J., Gačić Z., Vuković-Gačić B. 2011; The anthropogenic impact on water quality of the river Danube in Serbia: microbiological analysis and genotoxicity monitoring. Arch Biol Sci 63:1209–1217 [View Article]
    [Google Scholar]
  38. Kovach M. E., Shaffer M. D., Peterson K. M. 1996; A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142:2165–2174 [View Article][PubMed]
    [Google Scholar]
  39. Lemarchand K., Lebaron P. 2003; Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiol Lett 218:203–209 [View Article][PubMed]
    [Google Scholar]
  40. Lobitz B., Beck L., Huq A., Wood B., Fuchs G., Faruque A. S. G., Colwell R. R. 2000; Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A 97:1438–1443 [View Article][PubMed]
    [Google Scholar]
  41. Louis V. R., Russek-Cohen E., Choopun N., Rivera I. N. G., Gangle B., Jiang S. C., Rubin A., Patz J. A., Huq A., Colwell R. R. 2003; Predictability of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 69:2773–2785 [View Article][PubMed]
    [Google Scholar]
  42. Martinez-Urtaza J., Liebana E., Garcia-Migura L., Perez-Piñeiro P., Saco M. 2004; Characterization of Salmonella enterica serovar Typhimurium from marine environments in coastal waters of Galicia (Spain). Appl Environ Microbiol 70:4030–4034 [View Article][PubMed]
    [Google Scholar]
  43. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [View Article][PubMed]
    [Google Scholar]
  44. Mladenović-Ranisavljević I., Takić L., Vuković M., Nikolić Đ., Nenad Ž., Milosavljević P. 2012; Multi-criteria ranking of the Danube water quality, on its course through Serbia. Serbian Journal of Management 7:299–307 [View Article]
    [Google Scholar]
  45. Mmolawa P. T., Willmore R., Thomas C. J., Heuzenroeder M. W. 2002; Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int J Med Microbiol 291:633–644 [View Article][PubMed]
    [Google Scholar]
  46. Moganedi K. L. M., Goyvaerts E. M. A., Venter S. N., Sibara M. M. 2007; Optimization of the PCR-invA primers for the detection of Salmonella in drinking and surface waters following a pre-cultivation step. Water SA 33:195–202
    [Google Scholar]
  47. Noble P. A., Bidle K. D., Fletcher M. 1997; Natural microbial community compositions compared by a back-propagating neural network and cluster analysis of 5S rRNA. Appl Environ Microbiol 63:1762–1770[PubMed]
    [Google Scholar]
  48. Ogg J. E., Ryder R. A., Smith H. L. Jr 1989; Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah. Appl Environ Microbiol 55:95–99[PubMed]
    [Google Scholar]
  49. Pekárová P., Onderka M., Pekár J., Rončák P., Miklánek P. 2009; Prediction of water quality in the Danube River under extreme hydrological and temperature conditions. J Hydrol Hydromech 57:3–15 [View Article]
    [Google Scholar]
  50. Radu S., Vincent M., Apun K., Abdul Rahim R., Benjamin P. G., Yuherman, Rusul G. 2002; Molecular characterization of Vibrio cholerae O1 outbreak strains in Miri, Sarawak (Malaysia). Acta Trop 83:169–176 [View Article][PubMed]
    [Google Scholar]
  51. Rashed S. M., Mannan S. B., Johura F. T., Islam M. T., Sadique A., Watanabe H., Sack R. B., Huq A., Colwell R. R. other authors 2012; Genetic characteristics of drug-resistant Vibrio cholerae O1 causing endemic cholera in Dhaka, 2006-2011. J Med Microbiol 61:1736–1745 [View Article][PubMed]
    [Google Scholar]
  52. Reischer G. H., Haider J. M., Sommer R., Stadler H., Keiblinger K. M., Hornek R. W., Zerobin W., Mach R. L., Farnleitner A. H. 2008; Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ Microbiol 10:2598–2608 [View Article][PubMed]
    [Google Scholar]
  53. Rivera I. N. G., Lipp E. K., Gil A., Choopun N., Huq A., Colwell R. R. 2003; Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol 5:599–606 [View Article][PubMed]
    [Google Scholar]
  54. Schiemer F., Baumgartner C., Tockner K. 1999; Restoration of floodplain rivers: the ‘Danube restoration project’. Regul Rivers: Res Manage 15:231–244 [View Article]
    [Google Scholar]
  55. Seman M., Prokšová M., Rosinský J., Ferianc P. 2012; Isolation, identification, and characterization of Vibrio cholerae from the Danube River in Slovakia. Folia Microbiol (Praha) 57:191–197 [View Article][PubMed]
    [Google Scholar]
  56. Shears P. 2001; Recent developments in cholera. Curr Opin Infect Dis 14:553–558 [View Article][PubMed]
    [Google Scholar]
  57. Singh D. V., Matte M. H., Matte G. R., Jiang S., Sabeena F., Shukla B. N., Sanyal S. C., Huq A., Colwell R. R. 2001; Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol 67:910–921 [View Article][PubMed]
    [Google Scholar]
  58. Soto S. M., Rodríguez I., Rodicio M. R., Vila J., Mendoza M. C. 2006; Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J Med Microbiol 55:365–373 [View Article][PubMed]
    [Google Scholar]
  59. Straub T. M., Chandler D. P. 2003; Towards a unified system for detecting waterborne pathogens. J Microbiol Methods 53:185–197 [View Article][PubMed]
    [Google Scholar]
  60. Sugumar G., Chrisolite B., Velayutham P., Selvan A., Ramesh U. 2008; Occurrence and seasonal variation of bacterial indicators of faecal pollution along Thoothukudi Coast, Tamil Nadu. J Environ Biol 29:387–391[PubMed]
    [Google Scholar]
  61. Thompson D. E., Rajal V. B., De Batz S., Wuertz S. 2006; Detection of Salmonella spp. in water using magnetic capture hybridization combined with PCR or real-time PCR. J Water Health 4:67–75[PubMed]
    [Google Scholar]
  62. Touron A., Berthe T., Pawlak B., Petit F. 2005; Detection of Salmonella in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res Microbiol 156:541–553 [View Article][PubMed]
    [Google Scholar]
  63. WHO 2002 The World Health Report 2002 – Reducing Risks, Promoting Healthy Life Geneva: World Health Organization;
    [Google Scholar]
  64. WHO 2006; Cholera 2005. Wkly Epidemiol Rec 81:297–307[PubMed]
    [Google Scholar]
  65. Winter C., Hein T., Kavka G., Mach R. L., Farnleitner A. H. 2007; Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Appl Environ Microbiol 73:421–431 www.deltanet-project.eu [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055749-0
Loading
/content/journal/jmm/10.1099/jmm.0.055749-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error