1887

Abstract

The aim of this study is to examine the role of a small heat-shock protein (sHsp18) from in the survival of heterologous recombinant hosts carrying the gene encoding this protein under different environmental conditions that are normally encountered by during its infection of the human host. Using an system where expression is controlled by its native promoter, we show that expression of is induced under low oxygen tension, nutrient depletion and oxidative stress, all of which reflect the natural internal environment of the granulomas where the pathogen resides for long periods. We demonstrate the chaperone activity of sHsp18 through its ability to confer survival advantage to recombinant at heat-shock temperatures. Additional evidence for the protective role of sHsp18 was obtained when harbouring a copy of was found to multiply better in human macrophages. Furthermore, the autokinase activity of sHsp18 protein demonstrated for what is believed to be the first time in this study implies that some of the functions of sHsp18 might be controlled by the phosphorylation state of this protein. Results from this study suggest that might be one of the factors that facilitate the survival and persistence of under stress and autophosphorylation of sHsp18 protein could be a mechanism used by this protein to sense changes in the external environment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.057851-0
2013-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/959.html?itemId=/content/journal/jmm/10.1099/jmm.0.057851-0&mimeType=html&fmt=ahah

References

  1. Anes E., Peyron P., Staali L., Jordao L., Gutierrez M. G., Kress H., Hagedorn M., Maridonneau-Parini I., Skinner M. A. et al. 2006; Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol 8:939–960 [View Article][PubMed]
    [Google Scholar]
  2. Basu J., Mahapatra S., Kundu M., Mukhopadhyay S., Nguyen-Distèche M., Dubois P., Joris B., Van Beeumen J., Cole S. T. et al. 1996; Identification and overexpression in Escherichia coli of a Mycobacterium leprae gene, pon1, encoding a high-molecular-mass class A penicillin-binding protein, PBP1. J Bacteriol 178:1707–1711[PubMed]
    [Google Scholar]
  3. Bierman M., Logan R., O’Brien K., Seno E. T., Nagaraja Rao R., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [View Article][PubMed]
    [Google Scholar]
  4. Booth R. J., Harris D. P., Love J. M., Watson J. D. 1988; Antigenic proteins of Mycobacterium leprae. Complete sequence of the gene for the 18-kDa protein. J Immunol 140:597–601[PubMed]
    [Google Scholar]
  5. Chowdary T. K., Raman B., Ramakrishna T., Rao C. M. 2004; Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381:379–387 [View Article][PubMed]
    [Google Scholar]
  6. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C. et al. 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011 [View Article][PubMed]
    [Google Scholar]
  7. Cosma C. L., Sherman D. R., Ramakrishnan L. 2003; The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676 [View Article][PubMed]
    [Google Scholar]
  8. Cunningham A. F., Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol 180:801–808[PubMed]
    [Google Scholar]
  9. Dellagostin O. A., Esposito G., Eales L. J., Dale J. W., McFadden J. 1995; Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141:1785–1792 [View Article][PubMed]
    [Google Scholar]
  10. Dockrell H. M., Stoker N. G., Lee S. P., Jackson M., Grant K. A., Jouy N. F., Lucas S. B., Hasan R., Hussain R., McAdam K. P. 1989; T-cell recognition of the 18-kilodalton antigen of Mycobacterium leprae. Infect Immun 57:1979–1983[PubMed]
    [Google Scholar]
  11. el Yaagoubi A., Kohiyama M., Richarme G. 1994; Localization of DnaK (chaperone 70) from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. J Bacteriol 176:7074–7078[PubMed]
    [Google Scholar]
  12. Frehel C., Rastogi N. 1987; Mycobacterium leprae surface components intervene in the early phagosome-lysosome fusion inhibition event. Infect Immun 55:2916–2921[PubMed]
    [Google Scholar]
  13. Jordao L., Bleck C. K., Mayorga L., Griffiths G., Anes E. 2008; On the killing of mycobacteria by macrophages. Cell Microbiol 10:529–548[PubMed]
    [Google Scholar]
  14. Kantorow M., Piatigorsky J. 1994; Alpha-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci U S A 91:3112–3116 [View Article][PubMed]
    [Google Scholar]
  15. Laskowska E., Wawrzynów A., Taylor A. 1996; IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78:117–122 [View Article][PubMed]
    [Google Scholar]
  16. Lee G. J., Vierling E. 2000; A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198 [View Article][PubMed]
    [Google Scholar]
  17. Lini N., Rehna E. A., Shiburaj S., Maheshwari J. J., Shankernarayan N. P., Dharmalingam K. 2008; Functional characterization of a small heat shock protein from Mycobacterium leprae.. BMC Microbiol 8:208 [View Article][PubMed]
    [Google Scholar]
  18. Marques M. A., Espinosa B. J., Xavier da Silveira E. K., Pessolani M. C., Chapeaurouge A., Perales J., Dobos K. M., Belisle J. T., Spencer J. S., Brennan P. J. 2004; Continued proteomic analysis of Mycobacterium leprae subcellular fractions. Proteomics 4:2942–2953 [View Article][PubMed]
    [Google Scholar]
  19. Mor N. 1983; Intracellular location of Mycobacterium leprae in macrophages of normal and immune-deficient mice and effect of rifampin. Infect Immun 42:802–811[PubMed]
    [Google Scholar]
  20. Narberhaus F. 2002; Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93 [View Article][PubMed]
    [Google Scholar]
  21. Narro M. L., Adams C. W., Cohen S. N. 1990; Isolation and characterization of Rhodobacter capsulatus mutants defective in oxygen regulation of the puf operon. J Bacteriol 172:4549–4554[PubMed]
    [Google Scholar]
  22. Navarro Llorens J. M., Tormo A., Martínez-García E. 2010; Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495 [View Article][PubMed]
    [Google Scholar]
  23. Noordeen S. D. 1994; The epidemiology of leprosy. In Leprosy pp. 29–48 Edited by Hastings R. C. Edinburgh: Churchill-Livingstone;
    [Google Scholar]
  24. Paranthaman S., Dharmalingam K. 2003; Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl Environ Microbiol 69:84–91 [View Article][PubMed]
    [Google Scholar]
  25. Pietrowski D., Graw J. 1997; Autokinase activity of alpha-crystallin inhibits its specific interaction with the DOTIS element in the murine gamma D/E/F-crystallin promoter in vitro. Biol Chem 378:1183–1186[PubMed]
    [Google Scholar]
  26. Preneta R., Papavinasasundaram K. G., Cozzone A. J., Duclos B. 2004; Autophosphorylation of the 16 kDa and 70 kDa antigens (Hsp 16.3 and Hsp 70) of Mycobacterium tuberculosis.. Microbiology 150:2135–2141 [View Article][PubMed]
    [Google Scholar]
  27. Ren D., Bedzyk L. A., Ye R. W., Thomas S. M., Wood T. K. 2004; Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli.. Appl Environ Microbiol 70:2038–2043 [View Article][PubMed]
    [Google Scholar]
  28. Santhosh R. S., Pandian S. K., Lini N., Shabaana A. K., Nagavardhini A., Dharmalingam K. 2005; Cloning of mce1 locus of Mycobacterium leprae in Mycobacterium smegmatis mc2 155 SMR5 and evaluation of expression of mce1 genes in M. smegmatis and M. leprae.. FEMS Immunol Med Microbiol 45:291–302 [View Article][PubMed]
    [Google Scholar]
  29. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.. Mol Microbiol 4:1911–1919 [View Article][PubMed]
    [Google Scholar]
  30. van der Wel N., Hava D., Houben D., Fluitsma D., van Zon M., Pierson J., Brenner M., Peters P. J. 2007; M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298 [View Article][PubMed]
    [Google Scholar]
  31. Young R. A., Mehra V., Sweetser D., Buchanan T., Clark-Curtiss J., Davis R. W., Bloom B. R. 1985; Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae.. Nature 316:450–452 [View Article][PubMed]
    [Google Scholar]
  32. Yuan Y., Crane D. D., Barry C. E. III 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol 178:4484–4492[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.057851-0
Loading
/content/journal/jmm/10.1099/jmm.0.057851-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error