1887

Abstract

Enteric fever is a major public health problem in developing countries. Due to the problem of resistance to first-line drugs and fluoroquinolone, cephalosporins are currently used for treatment of enteric fever. Cephalosporin resistance in spp. is mainly due to production of extended-spectrum β-lactamases (ESBLs). The majority of ESBLs in are derivatives of the TEM and SHV β-lactamase families. The objectives of this study were to detect antibiotic susceptibility patterns, ESBL production and TEM-, SHV- and CTX-M-encoding genes ( , and ) among clinical isolates of spp. A total of 134 isolates [ Typhi ( = 101), Paratyphi A ( = 31), Paratyphi B ( = 1) and Typhimurium ( = 1)] were included in this study. Multidrug resistance was seen in 5/134 (3.73 %) isolates, all of which belonged to serotype . Typhi. A better susceptibility profile was observed for first-line drugs (ampicillin, chloramphenicol, co-trimoxazole and tetracycline) and cephalosporins (cefotaxime, ceftazidime, ceftriaxone, cefixime and cefepime). However, 131 (97.76 %) of the 134 isolates were resistant to nalidixic acid and one (0.75 %) was resistant to ciprofloxacin. TEM-1-type β-lactamase ( ) was detected in six (4.47 %) of the 134 isolates, which belonged to the serotype . Typhi. All six TEM-positive isolates were negative for the gene and none of the isolates was positive for the gene. The presence of the gene encoding TEM-1 β-lactamase is believed to confer resistance only to penicillins and early cephalosporins; however, the resistance spectrum of TEM-1 descendants may extend to second-, third- and fourth-generation cephalosporins. The ESBLs derived from TEM-1 differ from their progenitors by as few as 1 aa, and have the ability to hydrolyse third-generation cephalosporins. Therefore, appropriate selection and rotation of antibiotics as well as continuous monitoring of antibiotic susceptibility profiles could help to control the emergence and spread of resistant strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.068486-0
2014-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/7/962.html?itemId=/content/journal/jmm/10.1099/jmm.0.068486-0&mimeType=html&fmt=ahah

References

  1. Ahamed J., Kundu M. 1999; Molecular characterization of the SHV-11 β-lactamase of Shigella dysenteriae. Antimicrob Agents Chemother 43:2081–2083[PubMed]
    [Google Scholar]
  2. Ahmed D., Hoque A., Mazumder R., Nahar K., Islam N., Gazi S. A., Hossain M. A. 2012; Salmonella enterica serovar Typhi strain producing extended-spectrum β-lactamases in Dhaka, Bangladesh. J Med Microbiol 61:1032–1033 [View Article][PubMed]
    [Google Scholar]
  3. Al Naiemi N., Zwart B., Rijnsburger M. C., Roosendaal R., Debets-Ossenkopp Y. J., Mulder J. A., Fijen C. A., Maten W., Vandenbroucke-Grauls C. M., Savelkoul P. H. 2008; Extended-spectrum-β-lactamase production in a Salmonella enterica serotype Typhi strain from the Philippines. J Clin Microbiol 46:2794–2795 [View Article][PubMed]
    [Google Scholar]
  4. Bhattacharya S. S., Das U., Choudhury B. K. 2011; Occurrence & antibiogram of Salmonella Typhi & S. Paratyphi A isolated from Rourkela, Orissa. Indian J Med Res 133:431–433[PubMed]
    [Google Scholar]
  5. Bonnet R. 2004; Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14 [View Article][PubMed]
    [Google Scholar]
  6. Bradford P. A. 2001; Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [View Article][PubMed]
    [Google Scholar]
  7. Bush K. 2001; New β-lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32:1085–1089 [View Article][PubMed]
    [Google Scholar]
  8. Choudhary A., Gopalakrishnan R., Nambi P. S., Ramasubramanian V., Ghafur K. A., Thirunarayan M. A. 2013; Antimicrobial susceptibility of Salmonella enterica serovars in a tertiary care hospital in southern India. Indian J Med Res 137:800–802[PubMed]
    [Google Scholar]
  9. CLSI 2011 Performance Standards for Antimicrobial Susceptibility Testing 21st Informational Supplement. CLSI Document M100-S21 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  10. Cooke F. J., Wain J. 2004; The emergence of antibiotic resistance in typhoid fever. Travel Med Infect Dis 2:67–74 [View Article][PubMed]
    [Google Scholar]
  11. Crump J. A., Barrett T. J., Nelson J. T., Angulo F. J. 2003; Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 37:75–81 [View Article][PubMed]
    [Google Scholar]
  12. Crump J. A., Luby S. P., Mintz E. D. 2004; The global burden of typhoid fever. Bull World Health Organ 82:346–353[PubMed]
    [Google Scholar]
  13. Du Bois S. K., Marriott M. S., Amyes S. G. 1995; TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure and function. J Antimicrob Chemother 35:7–22 [View Article][PubMed]
    [Google Scholar]
  14. Dutta S., Sur D., Manna B., Bhattacharya S. K., Deen J. L., Clemens J. D. 2005; Rollback of Salmonella enterica serotype Typhi resistance to chloramphenicol and other antimicrobials in Kolkata, India. Antimicrob Agents Chemother 49:1662–1663 [View Article][PubMed]
    [Google Scholar]
  15. Effa E. E., Bukirwa H. 2008; Azithromycin for treating uncomplicated typhoid and paratyphoid fever (enteric fever). Cochrane Database Syst Rev 4:CD006083[PubMed]
    [Google Scholar]
  16. Fortineau N., Naas T., Gaillot O., Nordmann P. 2001; SHV-type extended-spectrum β-lactamase in a Shigella flexneri clinical isolate. J Antimicrob Chemother 47:685–688 [View Article][PubMed]
    [Google Scholar]
  17. Gupta V. 2007; An update on newer β-lactamases. Indian J Med Res 126:417–427[PubMed]
    [Google Scholar]
  18. Hirose K., Tamura K., Sagara H., Watanabe H. 2001; Antibiotic susceptibilities of Salmonella enterica serovar Typhi and S. enterica serovar Paratyphi A isolated from patients in Japan. Antimicrob Agents Chemother 45:956–958 [View Article][PubMed]
    [Google Scholar]
  19. Jacoby G. A., Munoz-Price L. S. 2005; The new β-lactamases. N Engl J Med 352:380–391 [View Article][PubMed]
    [Google Scholar]
  20. Karthikeyan K., Thirunarayan M., Krishnan P. 2011; CTX-M15 type ESBL producing Salmonella from a paediatric patient in Chennai, India. Indian J Med Res 134:487–489[PubMed]
    [Google Scholar]
  21. Kownhar H., Shankar E. M., Rajan R., Rao U. A. 2007; Emergence of nalidixic acid-resistant Salmonella enterica serovar Typhi resistant to ciprofloxacin in India. J Med Microbiol 56:136–137 [View Article][PubMed]
    [Google Scholar]
  22. Lim K. T., Yasin R., Yeo C. C., Puthucheary S., Thong K. L. 2009; Characterization of multidrug resistant ESBL-producing Escherichia coli isolates from hospitals in Malaysia. J Biomed Biotechnol 2009:165637 [View Article][PubMed]
    [Google Scholar]
  23. Madhulika U., Harish B. N., Parija S. C. 2004; Current pattern in antimicrobial susceptibility of Salmonella Typhi isolates in Pondicherry. Indian J Med Res 120:111–114[PubMed]
    [Google Scholar]
  24. Manchanda V., Bhalla P., Sethi M., Sharma V. K. 2006; Treatment of enteric fever in children on the basis of current trends of antimicrobial susceptibility of Salmonella enterica serovar Typhi and Paratyphi A. Indian J Med Microbiol 24:101–106 [View Article][PubMed]
    [Google Scholar]
  25. Medeiros A. A. 1997; Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis 24:Suppl 1S19–S45 [View Article][PubMed]
    [Google Scholar]
  26. Morris D., Whelan M., Corbett-Feeney G., Cormican M., Hawkey P., Li X., Doran G. 2006; First report of extended-spectrum-β-lactamase-producing Salmonella enterica isolates in Ireland. Antimicrob Agents Chemother 50:1608–1609 [View Article][PubMed]
    [Google Scholar]
  27. Old D. C. 1996; Salmonella. In Mackie and McCartney Practical Medical Microbiology, 14th edn. pp. 385–404 Edited by Collee J. G., Fraser A. G., Marmion B. P., Simmons A. Edinburgh: Churchill Livingstone;
    [Google Scholar]
  28. Pai H., Choi E. H., Lee H. J., Hong J. Y., Jacoby G. A. 2001; Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol 39:3747–3749 [View Article][PubMed]
    [Google Scholar]
  29. Paterson D. L., Bonomo R. A. 2005; Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657–686 [View Article][PubMed]
    [Google Scholar]
  30. Payne D. J., Marriott M. S., Amyes S. G. 1990; Characterisation of a unique ceftazidime-hydrolysing β-lactamase, TEM-E2. J Med Microbiol 32:131–134 [View Article][PubMed]
    [Google Scholar]
  31. Petroni A., Corso A., Melano R., Cacace M. L., Bru A. M., Rossi A., Galas M. 2002; Plasmidic extended-spectrum β-lactamases in Vibrio cholerae O1 El Tor isolates in Argentina. Antimicrob Agents Chemother 46:1462–1468 [View Article][PubMed]
    [Google Scholar]
  32. Pokharel B. M., Koirala J., Dahal R. K., Mishra S. K., Khadga P. K., Tuladhar N. R. 2006; Multidrug-resistant and extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis 10:434–438 [View Article][PubMed]
    [Google Scholar]
  33. Rodríguez M. M., Power P., Radice M., Vay C., Famiglietti A., Galleni M., Ayala J. A., Gutkind G. 2004; Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48:4895–4897 [View Article][PubMed]
    [Google Scholar]
  34. Rotimi V. O., Jamal W., Pal T., Sovenned A., Albert M. J. 2008; Emergence of CTX-M-15 type extended-spectrum β-lactamase-producing Salmonella spp. in Kuwait and the United Arab Emirates. J Med Microbiol 57:881–886 [View Article][PubMed]
    [Google Scholar]
  35. Salverda M. L., De Visser J. A., Barlow M. 2010; Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 34:1015–1036[PubMed]
    [Google Scholar]
  36. Scherer C. A., Miller S. I. 2001; Molecular pathogenesis of Salmonellae. In Principles of Bacterial Pathogenesis pp. 265–316 Edited by Groisman E. A. United States of America: Academic Press; [View Article]
    [Google Scholar]
  37. Sjölund M., Yam J., Schwenk J., Joyce K., Medalla F., Barzilay E., Whichard J. M. 2008; Human Salmonella infection yielding CTX-M β-lactamase, United States. Emerg Infect Dis 14:1957–1959 [View Article][PubMed]
    [Google Scholar]
  38. Tamang M. D., Nam H. M., Kim T. S., Jang G. C., Jung S. C., Lim S. K. 2011; Emergence of extended-spectrum β-lactamase (CTX-M-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J Clin Microbiol 49:2671–2675 [View Article][PubMed]
    [Google Scholar]
  39. Verma S., Thakur S., Kanga A., Singh G., Gupta P. 2010; Emerging Salmonella Paratyphi A enteric fever and changing trends in antimicrobial resistance pattern of salmonella in Shimla. Indian J Med Microbiol 28:51–53 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.068486-0
Loading
/content/journal/jmm/10.1099/jmm.0.068486-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error