1887

Abstract

Subinhibitory concentrations (sub-MICs) of antibiotics, although not able to kill bacteria, can modify their physico-chemical characteristics and the architecture of their outermost surface and may interfere with some bacterial functions. This study investigated the ability of sub-MIC piperacillin/tazobactam (P/T) to interfere with the bacterial virulence parameters of adhesiveness, cell-surface hydrophobicity, motility, biofilm formation and sensitivity to oxidative stress. Antimicrobial activity against five clinical isolates, representative of clonal lineages of 96 strains of nosocomial origin, and six control strains (ATCC 27853, PAO1, AK1, MT1562, PT623, PAO1) was evaluated using the NCCLS microdilution method. The effects of sub-MIC on bacterial adhesion and biofilm formation were studied using a modified microtitre plate assay. The relative cell-surface hydrophobicity of strains was determined by measuring their ability to adhere to -hexadecane. that had been exposed overnight to P/T and incubated with P/T in the plate were also screened for their ability to swim using flagella and to twitch and for their sensitivity to oxidative stress. The results obtained showed that the impact of sub-MIC P/T on bacterial characteristics was different for the various strains of . There was a change in bacterial morphology and hydrophobicity that could explain a significant decrease in adhesion values in all clinical isolates and controls tested, a decrease in biofilm formation, a significant increase in sensitivity to oxidative stress, a significant decrease in flagellum-mediated swimming and a decrease in type IV fimbriae-mediated twitching. The results obtained indicate that sub-MIC P/T interferes with the pathogenic potential of .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45637-0
2004-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/9/JM530911.html?itemId=/content/journal/jmm/10.1099/jmm.0.45637-0&mimeType=html&fmt=ahah

References

  1. Alksne L. E., Projan S. J. 2000; Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 11:625–636 [CrossRef]
    [Google Scholar]
  2. Braga P. C., Sala M. T., Dal Sasso M. 1999; Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors. Antimicrob Agents Chemother 43:1013–1019
    [Google Scholar]
  3. Braga P. C., Sasso M. D., Sala M. T. 2000; Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother 45:15–25
    [Google Scholar]
  4. Deziel E., Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204 [CrossRef]
    [Google Scholar]
  5. Drago L., De Vecchi E., Mombelli B., Nicola L., Valli M., Gismondo M. R. 2001; Activity of levofloxacin and ciprofloxacin against urinary pathogens. J Antimicrob Chemother 48:37–45 [CrossRef]
    [Google Scholar]
  6. Evans D. J., Allison D. G., Brown M. R., Gilbert P. 1991; Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27:177–184 [CrossRef]
    [Google Scholar]
  7. Fonseca A. P., Moura J., Silva M., Fonseca A. F., Nogueira J. A. 2003; Adherence ability to abiotic surfaces in opportunistic Pseudomonas aeruginosa : a correlation study. Clin Microbiol Infect 9 (Suppl. 1):369– 369
    [Google Scholar]
  8. Gorby G. L., McGee Z. A. 1990; Antimicrobial interference with bacterial mechanisms of pathogenicity: effect of sub-MIC azithromycin on gonococcal piliation and attachment to human epithelial cells. Antimicrob Agents Chemother 34:2445–2448 [CrossRef]
    [Google Scholar]
  9. Gristina A. G. 1987; Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595 [CrossRef]
    [Google Scholar]
  10. Gristina A. G., Hobgood C. D., Webb L. X., Myrvik Q. N. 1987; Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8:423–426 [CrossRef]
    [Google Scholar]
  11. Gross M., Cramton S. E., Gotz F., Peschel A. 2001; Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426 [CrossRef]
    [Google Scholar]
  12. Hassett D. J., Elkins J. G., Ma J. F., McDermott T. R. 1999; Pseudomonas aeruginosa biofilm sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. Methods Enzymol 310:599–608
    [Google Scholar]
  13. Horii T., Morita M., Muramatsu H., Muranaka Y., Kanno T., Maekawa M. 2003; Effects of mupirocin at subinhibitory concentrations on flagella formation in Pseudomonas aeruginosa and Proteus mirabilis . J Antimicrob Chemother 51:1175–1179 [CrossRef]
    [Google Scholar]
  14. Hoyle B. D., Costerton J. W. 1991; Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105
    [Google Scholar]
  15. Ichimiya T., Yamasaki T., Nasu M. 1994; In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation. J Antimicrob Chemother 34:331–341 [CrossRef]
    [Google Scholar]
  16. Kawamura-Sato K., Iinuma Y., Hasegawa T., Horii T., Yamashino T., Ohta M. 2000; Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis . Antimicrob Agents Chemother 44:2869–2872 [CrossRef]
    [Google Scholar]
  17. Kim M. K., Xuan D., Quintiliani R., Nightingale C. H., Nicolau D. P. 2001; Pharmacokinetic and pharmacodynamic profile of high dose extended interval piperacillin–tazobactam. J Antimicrob Chemother 48:259–267 [CrossRef]
    [Google Scholar]
  18. Kohler T., Curty L. K., Barja F., van Delden C., Pechere J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996 [CrossRef]
    [Google Scholar]
  19. Labro M. T., Babin-Chevaye C., Hakim J. 1988; Influence of subinhibitory concentrations of ceftriaxone on opsonization and killing of Pseudomonas aeruginosa by human neutrophils. J Antimicrob Chemother 22:341–352 [CrossRef]
    [Google Scholar]
  20. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. 1994; Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295
    [Google Scholar]
  21. McKenney D., Hubner J., Muller E., Wang Y., Goldmann D. A., Pier G. B. 1998; The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720
    [Google Scholar]
  22. Mozes N., Leonard A. J., Rouxhet P. G. 1988; On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim Biophys Acta 945:324–334 [CrossRef]
    [Google Scholar]
  23. Mozes N. A., Amory D. E., Leonard A. J., Rouxhet P. G. 1989; Surface properties of microbial cells and their role in adhesion and flocculation. Colloids Surfaces 42:313–329 [CrossRef]
    [Google Scholar]
  24. NCCLS 2000 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 5th edn. Approved. Standard M7-A4 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  25. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–105
    [Google Scholar]
  26. Paranchych W., Sastry P. A., Frost L. S., Carpenter M., Armstrong G. D., Watts T. H. 1979; Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO. Can J Microbiol 25:1175–1181 [CrossRef]
    [Google Scholar]
  27. Perez P. F., Minnaard Y., Disalvo E. A., De Antoni G. L. 1998; Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64:21–26
    [Google Scholar]
  28. Rupp M. E., Hamer K. E. 1998; Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, l-ofloxacin and d-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis . J Antimicrob Chemother 41:155–161 [CrossRef]
    [Google Scholar]
  29. Schifferli D. M., Beachey E. H. 1988; Bacterial adhesion: modulation by antibiotics with primary targets other than protein synthesis. Antimicrob Agents Chemother 32:1609–1613 [CrossRef]
    [Google Scholar]
  30. Shibl A. M. 1985; Effect of antibiotics on adherence of microorganisms to epithelial cell surfaces. Rev Infect Dis 7:51–65 [CrossRef]
    [Google Scholar]
  31. Sonstein S. A., Burnham J. C. 1993; Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diagn Microbiol Infect Dis 16:277–289 [CrossRef]
    [Google Scholar]
  32. Tanaka G., Shigeta M., Komatsuzawa H., Sugai M., Suginaka H., Usui T. 1999; Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones. Chemotherapy 45:28–36 [CrossRef]
    [Google Scholar]
  33. Tanaka G., Shigeta M., Komatsuzawa H., Sugai M., Suginaka H., Usui T. 2000; Effect of clarithromycin on Pseudomonas aeruginosa biofilms. Chemotherapy 46:36–42
    [Google Scholar]
  34. Tateda K., Hirakata Y., Furuya N., Ohno A., Yamaguchi K. 1993; Effects of sub-MICs of erythromycin and other macrolide antibiotics on serum sensitivity of Pseudomonas aeruginosa . Antimicrob Agents Chemother 37:675–680 [CrossRef]
    [Google Scholar]
  35. Trafny E. A., Stepinska M., Antos M., Grzybowski J. 1995; Effects of free and liposome-encapsulated antibiotics on adherence of Pseudomonas aeruginosa to collagen type I. Antimicrob Agents Chemother 39:2645–2649 [CrossRef]
    [Google Scholar]
  36. Tsuda M., Iino T. 1983; Ordering of the flagellar genes in Pseudomonas aeruginosa by insertions of mercury transposon Tn 501. J Bacteriol 153:1008–1017
    [Google Scholar]
  37. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  38. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  39. Watts T. H., Sastry P. A., Hodges R. S., Paranchych W. 1983; Mapping of the antigenic determinants of Pseudomonas aeruginosa PAK polar pili. Infect Immun 42:113–121
    [Google Scholar]
  40. Wilson J. W., Schurr M. J., LeBlanc C. L., Ramamurthy R., Buchanan K. L., Nickerson C. A. 2002; Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224 [CrossRef]
    [Google Scholar]
  41. Wolter J. M., McCormack J. G. 1998; The effect of subinhibitory concentrations of antibiotics on adherence of Pseudomonas aeruginosa to cystic fibrosis (CF) and non-CF-affected tracheal epithelial cells. J Infect 37:217–223 [CrossRef]
    [Google Scholar]
  42. Yasuda H., Koga T., Fukuoka T. 1999; In vitro and in vivo models of bacterial biofilms. Methods Enzymol 310:577–595
    [Google Scholar]
  43. Zhanel G. G., Kim S. O., Davidson R. J., Hoban D. J., Nicolle L. E. 1993; Effect of subinhibitory concentrations of ciprofloxacin and gentamicin on the adherence of Pseudomonas aeruginosa to Vero cells and voided uroepithelial cells. Chemotherapy 39:105–111 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45637-0
Loading
/content/journal/jmm/10.1099/jmm.0.45637-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error