1887

Abstract

A phage display library made from DNA was sorted against a central venous catheter (CVC) that had been removed from a patient 2 days after insertion. After the first panning, approximately 50 % of the clones encoded proteins known to interact with mammalian proteins. After the second and third pannings, fibrinogen-binding and β-glycoprotein I (β-GPI)-binding phage particles were clearly dominating. Proteins adsorbed to different CVCs were investigated using specific antibodies. Among the proteins probed for, fibrinogen was most abundant, but, interestingly, β-GPI was also detected on all tested CVCs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45638-0
2004-10-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/10/JM531001.html?itemId=/content/journal/jmm/10.1099/jmm.0.45638-0&mimeType=html&fmt=ahah

References

  1. Barbucci R., Magnani A. 1994; Conformation of human plasma proteins at polymer surfaces: the effectiveness of surface heparinization. Biomaterials 15:955–962 [CrossRef]
    [Google Scholar]
  2. Bjerketorp J., Nilsson M., Ljungh Å., Flock J. I., Jacobsson K., Frykberg L. 2002; A novel von Willebrand-binding protein expressed by Staphylococcus aureus . Microbiology 148:2037–2044
    [Google Scholar]
  3. Bodén M. K., Flock J. I. 1989; Fibrinogen-binding protein/clumping factor from Staphylococcus aureus . Infect Immun 57:2358–2363
    [Google Scholar]
  4. Bodén M. K., Flock J. I. 1994; Cloning and characterization of a gene for a 19 kDa fibrinogen-binding protein from Staphylococcus aureus . Mol Microbiol 4:599–606
    [Google Scholar]
  5. Borchman D., Harris E. N., Pierangeli S. S., Lamba O. P. 1995; Interactions and molecular structure of cardiolipin and beta 2-glycoprotein 1 (beta 2-GP1. Clin Exp Immunol 102:373–378
    [Google Scholar]
  6. Chamley L. W., Duncalf A. M., Konarkovska B., Mitchell M. D., Johnson P. M. 1999; Conformationally altered β2-glycoprotein I is the antigen for anti-cardiolipin autoantibodies. Clin Exp Immunol 155:571–576
    [Google Scholar]
  7. Chonn A., Semple S. C., Cullis P. R. 1995; Beta 2-glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of ‘‘non-self’’ particles. J Biol Chem 270:25845–25849 [CrossRef]
    [Google Scholar]
  8. Courtney J. M., Lamba N. M., Sundaram S., Forbes C. D. 1994; Biomaterials for blood-contacting applications. Biomaterials 15:737–744 [CrossRef]
    [Google Scholar]
  9. Dickinson R. B., Nagel J. A., McDevitt D., Foster T. J., Proctor R. A., Cooper S. L. 1995; Quantitative comparison of clumping factor- and coagulase-mediated Staphylococcus aureus adhesion to surface-bound fibrinogen under flow. Infect Immun 63:3143–3150
    [Google Scholar]
  10. Fabrizi F., Sangiorgio R., Pontoriero G., Corti M., Tentori F., Troina E., Locatelli F. 1999; Antiphospholipid (aPL) antibodies in end-stage renal disease. J Nephrol 12:89–94
    [Google Scholar]
  11. Fischer B. E., Schlokat U., Reiter M., Mundt W., Dorner F. 1997; Biochemical and functional characterization of recombinant von Willebrand factor produced on a large scale. Cell Mol Life Sci 53:943–950 [CrossRef]
    [Google Scholar]
  12. Francois P., Schrenzel J., Stoerman-Chopard C., Favre H., Herrmann M., Foster T. J., Lew D. P., Vaudaux P. 2000; Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. J Lab Clin Med 135:32–42 [CrossRef]
    [Google Scholar]
  13. Fuquay J. I., Loo D. T., Barnes D. W. 1986; Binding of Staphylococcus aureus by human serum spreading factor in an in vitro assay. Infect Immun 52:714–717
    [Google Scholar]
  14. Galli M., Comfurius P., Maassen C., Hemker H. C., de Baets M. H., van Breda-Vriesman P. J., Barbui T., Zwaal R. F., Bevers E. M. 1990; Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 335:1544–1547 [CrossRef]
    [Google Scholar]
  15. Hartleib J., Kohler N., Dickinson R. B. & 7 other authors; 2000; Protein A is the von Willebrand factor binding protein on Staphylococcus aureus . Blood 96:2149–2156
    [Google Scholar]
  16. Heilmann C., Herrmann M., Kehrel B. E., Peters G. 2002; Platelet-binding domains in 2 fibrinogen-binding proteins of Staphylococcus aureus identified by phage display. J Infect Dis 186:32–39 [CrossRef]
    [Google Scholar]
  17. Herrmann M., Vaudaux P. E., Pittet D., Auckenthaler R., Lew P. D., Schumacher-Perdreau F., Peters G., Waldvogel F. A. 1988; Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158:693–701 [CrossRef]
    [Google Scholar]
  18. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. 1991; Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 59:279–288
    [Google Scholar]
  19. Herrmann M., Hartleib J., Kehrel B., Montgomery R. R., Sixma J. J., Peters G. 1997; Interaction of von Willebrand factor with Staphylococcus aureus . J Infect Dis 176:984–991 [CrossRef]
    [Google Scholar]
  20. Jacobsson K., Frykberg L. 1995; Cloning of ligand-binding domains of bacterial receptors by phage display. Biotechniques 18:878–885
    [Google Scholar]
  21. Jacobsson K., Frykberg L. 1996; Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100 % correct clones. Biotechniques 20:1070–1081
    [Google Scholar]
  22. Jacobsson K., Frykberg L. 1998; Gene VIII-based, phage-display vectors for selection against complex mixtures of ligands. Biotechniques 24:294–301
    [Google Scholar]
  23. Jacobsson K., Frykberg L. 2001; Shotgun phage display cloning. Comb Chem High Throughput Screen 4:135–143
    [Google Scholar]
  24. Jacobsson K., Rosander A., Bjerketorp J., Frykberg L. 2003; Shotgun Phage Display – selection for bacterial receptins or other exported proteins. Biol Proced Online 5:123–135 [CrossRef]
    [Google Scholar]
  25. Jönsson K., Signäs C., Müller H. P., Lindberg M. 1991; Two different genes encode fibronectin binding proteins in Staphylococcus aureus .The complete nucleotide sequence and characterization of the second gene. Eur J Biochem 202:1041–1048 [CrossRef]
    [Google Scholar]
  26. Kaida S., Miyata T., Yoshizawa Y., Kawabata S., Morita T., Igarashi H., Iwanaga S. 1987; Nucleotide sequence of the staphylocoagulase gene: its unique COOH-terminal 8 tandem repeats. J Biochem (Tokyo) 102:1177–1186
    [Google Scholar]
  27. Kato H., Enjyoji K. 1991; Amino acid sequence and location of the disulfide bonds in bovine beta 2-glycoprotein I: the presence of five Sushi domains. Biochemistry 30:11687–11694 [CrossRef]
    [Google Scholar]
  28. Kawabata S., Morita T., Miyata T., Iwanaga S., Igarashi H. 1986; Isolation and characterization of staphylocoagulase chymotryptic fragment.Localization of the procoagulant- and prothrombin-binding domain of this protein. J Biol Chem 261:1427–1433
    [Google Scholar]
  29. Kronvall G., Jönsson K. 1999; Receptins: a novel term for an expanding spectrum of natural and engineered microbial proteins with binding properties for mammalian proteins. J Mol Recognit 12:38–44 [CrossRef]
    [Google Scholar]
  30. Kuroda M., Ohta T., Uchiyama I. & 34 other authors; 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [CrossRef]
    [Google Scholar]
  31. Li Z., Krilis S. A. 2003; Anti-β2-glycoprotein I antibodies and the antiphospholipid syndrome. Autoimmun Rev 2:229–234 [CrossRef]
    [Google Scholar]
  32. Malik P., Terry T. D., Gowda L. R., Langara A., Petukhov S. A., Symmons M. F., Welsh L. C., Marvin D. A., Perham R. N. 1996; Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260:9–21 [CrossRef]
    [Google Scholar]
  33. McDevitt D., Vaudaux P., Foster T. J. 1992; Genetic evidence that bound coagulase of Staphylococcus aureus is not clumping factor. Infect Immun 60:1514–1523
    [Google Scholar]
  34. McIntyre J. A., Wagenknecht D. R. 2003; Antiphospholipid antibodies and renal transplantation: a risk assessment. Lupus 12:555–559 [CrossRef]
    [Google Scholar]
  35. McNeil H. P., Simpson R. J., Chesterman C. N., Krilis S. A. 1990; Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H. Proc Natl Acad Sci U S A 87:4120–4124 [CrossRef]
    [Google Scholar]
  36. McNeil H. P., Chesterman C. N., Krilis S. A. 1991; Immunology and clinical importance of antiphospholipid antibodies. Adv Immunol 49:193–280
    [Google Scholar]
  37. Nimpf J., Bevers E. M., Bomans P. H., Till U., Wurm H., Kostner G. M., Zwaal R. F. 1986; Prothrombinase activity of human platelets is inhibited by beta 2-glycoprotein I. Biochim Biophys Acta 884:142–149 [CrossRef]
    [Google Scholar]
  38. Shi T., Iverson G. M., Qi J. C., Cockerill K. A., Linnik M. D., Konecny P., Krilis S. A. 2004; β2-Glycoprotein I binds factor XI and inhibits its activation by thrombin and factor XIIa: loss of inhibition by clipped beta 2-glycoprotein I. Proc Natl Acad Sci U S A 101:3939–3944 [CrossRef]
    [Google Scholar]
  39. Signäs C., Raucci G., Jönsson K., Lindgren P. E., Anantharamaiah G. M., Höök M., Lindberg M. 1989; Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus : use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci U S A 86:699–703 [CrossRef]
    [Google Scholar]
  40. Smith G. P. 1985; Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317 [CrossRef]
    [Google Scholar]
  41. Steinkasserer A., Estaller C., Weiss E. H., Sim R. B., Day A. J. 1991; Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem J 277:387–391
    [Google Scholar]
  42. Uhlen M., Guss B., Nilsson B., Gatenbeck S., Philipson L., Lindberg M. 1984; Complete sequence of the staphylococcal gene encoding protein A.A gene evolved through multiple duplications. J Biol Chem 259:1695–1702
    [Google Scholar]
  43. Vaudaux P., Suzuki R., Waldvogel F. A., Morgenthaler J. J., Nydegger U. E. 1984; Foreign body infection: role of fibronectin as a ligand for the adherence of Staphylococcus aureus . J Infect Dis 150:546–553 [CrossRef]
    [Google Scholar]
  44. von Eiff C., Peters G., Heilmann C. 2002; Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685 [CrossRef]
    [Google Scholar]
  45. Vroman L., Adams A. L., Fischer G. C., Munoz P. C. 1980; Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–159
    [Google Scholar]
  46. Wang S. X., Sun Y. T., Sui S. F. 2000; Membrane-induced conformational change in human apolipoprotein H. Biochem J 348:103–106 [CrossRef]
    [Google Scholar]
  47. Wann E. R., Gurusiddappa S., Höök M. 2000; The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871 [CrossRef]
    [Google Scholar]
  48. Zhang L., Jacobsson K., Vasi J., Lindberg M., Frykberg L. 1998; A second IgG-binding protein in Staphylococcus aureus strain 8325-4. Microbiology 144:985–991 [CrossRef]
    [Google Scholar]
  49. Zhang L., Jacobsson K., Ström K., Lindberg M., Frykberg L. 1999; Staphylococcus aureus expresses a cell surface protein that binds both IgG and β2-glycoprotein I. Microbiology 145:177–183 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45638-0
Loading
/content/journal/jmm/10.1099/jmm.0.45638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error