1887

Abstract

Plague is a natural focus-based disease, and for better understanding of this disease it is crucial to determine the molecular mechanisms of its pathogen, , for adapting to different foci. Gene inactivation, loss and acquisition are the main mechanisms that contribute to a pathogen's fitness. Determination of the whole-genome sequences of three strains, CO92, KIM and 91001, provided a good opportunity to probe into its genome in minute detail. Many genetic variations were found between the three strains. The present work focused on adaptive microevolutionary analysis of from different natural plague foci in China based on pseudogene profiles. Twenty-four mutations that led to inactivation in the corresponding genes were analysed, and a PCR-based screening method was employed to investigate the distribution of these mutations among isolates from different foci and also among seven strains of . It was found that isolates from the same focus had identical mutation profiles, and 260 isolates of were divided into eight genotypes, while harboured wild-type alleles for all the mutations. The isolates of three known biovars were grouped into distinct branches in the phylogenetic tree, which supports the proposition that biovars and directly arose from biovar individually. The constructed phylogenetic tree suggests that the isolates from focus B should be the oldest lineage of in China except for isolates from foci L and M, which might be a special lineage of and originated differently to the others.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45752-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/3/JM540307.html?itemId=/content/journal/jmm/10.1099/jmm.0.45752-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. 1999; Yersinia pestis , the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 96:14043–14048 [CrossRef]
    [Google Scholar]
  2. Adair D. M., Worsham P. L., Hill K. K., Klevytska A. M., Jackson P. J., Friedlander A. M., Keim P. 2000; Diversity in a variable-number tandem repeat from Yersinia pestis . J Clin Microbiol 38:1516–1519
    [Google Scholar]
  3. Deng W., Burland V., Plunkett G. III & 18 other authors; 2002; Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611 [CrossRef]
    [Google Scholar]
  4. Fan Z., Luo Y., Li F., Zhang C., Su X., Wang S. 1994; The pathogenicity of Yersinia pestis of Xilin Gol grassland type. Chin J Control Endemic Dis 9:340–342 (in Chinese
    [Google Scholar]
  5. Fan Z., Luo Y., Wang S., Jin L., Zhou X., Liu J., Zhang Y., Li F. 1995; Microtus brandti plague in the Xilin Gol Grassland was inoffensive to humans. Chin J Control Endemic Dis 10:56–57 (in Chinese
    [Google Scholar]
  6. Galimand M., Guiyoule A., Gerbaud G., Rasoamanana B., Chanteau S., Carniel E., Courvalin P. 1997; Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337:677–680 [CrossRef]
    [Google Scholar]
  7. Gonzalez M. D., Lichtensteiger C. A., Caughlan R., Vimr E. R. 2002; Conserved filamentous prophage in Escherichia coli O18 : K1 : H7 and Yersinia pestis biovar orientalis. J Bacteriol 184:6050–6055 [CrossRef]
    [Google Scholar]
  8. Guiyoule A., Grimont F., Iteman I., Grimont P. A., Lefevre M., Carniel E. 1994; Plague pandemics investigated by ribotyping of Yersinia pestis strains. J Clin Microbiol 32:634–641
    [Google Scholar]
  9. Guiyoule A., Rasoamanana B., Buchrieser C., Michel P., Chanteau S., Carniel E. 1997; Recent emergence of new variants of Yersinia pestis in Madagascar. J Clin Microbiol 35:2826–2833
    [Google Scholar]
  10. Hinchliffe S. J., Isherwood K. E., Stabler R. A. & 7 other authors; 2003; Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis . Genome Res 13:2018–2029 [CrossRef]
    [Google Scholar]
  11. Huang X. Z., Chu M. C., Engelthaler D. M., Lindler L. E. 2002; Genotyping of a homogeneous group of Yersinia pestis strains isolated in the United States. J Clin Microbiol 40:1164–1173 [CrossRef]
    [Google Scholar]
  12. Kukkonen M., Suomalainen M., Kyllonen P., Lahteenmaki K., Lang H., Virkola R., Helander I. M., Holst O., Korhonen T. K. 2004; Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica . Mol Microbiol 51:215–225
    [Google Scholar]
  13. Motin V. L., Georgescu A. M., Elliott J. M. & 8 other authors; 2002; Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS 100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase ( glpD ). J Bacteriol 184:1019–1027 [CrossRef]
    [Google Scholar]
  14. Oyston P. C., Prior J. L., Kiljunen S., Skurnik M., Hill J., Titball R. W. 2003; Expression of heterologous O-antigen in Yersinia pestis KIM does not affect virulence by the intravenous route. J Med Microbiol 52:289–294 [CrossRef]
    [Google Scholar]
  15. Parkhill J., Wren B. W., Thomson N. R. & 32 other authors; 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature 413:523–527 [CrossRef]
    [Google Scholar]
  16. Perry R. D., Fetherston J. D. 1997; Yersinia pestis –etiologic agent of plague. Clin Microbiol Rev 10:35–66
    [Google Scholar]
  17. Perry R. D., Straley S. C., Fetherston J. D., Rose D. J., Gregor J., Blattner F. R. 1998; DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 66:4611–4623
    [Google Scholar]
  18. Radnedge L., Agron P. G., Worsham P. L., Andersen G. L. 2002; Genome plasticity in Yersinia pestis . Microbiology 148:1687–1698
    [Google Scholar]
  19. Ratsitorahina M., Chanteau S., Rahalison L., Ratsifasoamanana L., Boisier P. 2000; Epidemiological and diagnostic aspects of the outbreak of pneumonic plague in Madagascar. Lancet 355:111–113 [CrossRef]
    [Google Scholar]
  20. Simonet M., Riot B., Fortineau N., Berche P. 1996; Invasin production by Yersinia pestis is abolished by insertion of an IS 200 -like element within the inv gene. Infect Immun 64:375–379
    [Google Scholar]
  21. Skurnik M., Peippo A., Ervela E. 2000; Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y .pseudotuberculosis serotype O : 1b. Mol Microbiol 37:316–330 [CrossRef]
    [Google Scholar]
  22. Song Y., Tong Z., Wang J. & 26 other authors; 2004; Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11:179–197 [CrossRef]
    [Google Scholar]
  23. Zhou D., Tong Z., Song Y. & 14 other authors; 2004a; Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186:5147–5152 [CrossRef]
    [Google Scholar]
  24. Zhou D., Han Y., Song Y. & 17 other authors; 2004b; DNA microarray analysis of genome dynamics in Yersinia pestis : insights into bacterial genome microevolution and niche adaptation. J Bacteriol 186:5138–5146 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45752-0
Loading
/content/journal/jmm/10.1099/jmm.0.45752-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error