1887

Abstract

Infection with and subsequent production of toxins A and B may result in -associated diarrhoea and pseudomembranous colitis in hospital patients. The effect of four temperate phages, obtained by induction of clinical isolates, on toxin production by was determined. None of these phages converted a lysogenized non-toxigenic strain to toxin production. One of the accessory toxin genes, , was detected in three phages, ϕC2, ϕC6 and ϕC8; however, the non-repeating regions of and encoding the enzymic domains were not carried on phage DNA. Phage infection of toxigenic strains increased toxin B production in four of six lysogens, although the level of transcription as determined by real-time RT-PCR was not significantly altered. However, levels of toxin A transcription in two lysogens were significantly altered without any corresponding differences in toxin A production.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45821-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/2/JM540205.html?itemId=/content/journal/jmm/10.1099/jmm.0.45821-0&mimeType=html&fmt=ahah

References

  1. Adams M. 1959 Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Angeletti B., Battiloro E., Pascale E., D'Ambrosio E. 1995; Southern and Northern blot fixing by microwave oven. Nucleic Acids Res 23:879–880 [CrossRef]
    [Google Scholar]
  3. Barroso L. A., Moncrief J. S., Lyerly D. M., Wilkins T. D. 1994; Mutagenesis of the Clostridium difficile toxin B gene and effect on cytotoxic activity. Microb Pathog 16:297–303 [CrossRef]
    [Google Scholar]
  4. Bartlett J. G., Moon N., Chang T. W., Taylor N., Onderdonk A. B. 1978; Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75:778–782
    [Google Scholar]
  5. Braun V., Hundsberger T., Leukel P., Sauerborn M., von Eichel-Streiber C. 1996; Definition of the single integration site of the pathogenicity locus in Clostridium difficile . Gene 181:29–38 [CrossRef]
    [Google Scholar]
  6. Bruggemann H., Baumer S., Fricke W. F. & 8 other authors; 2003; The genome sequence of Clostridium tetani , the causative agent of tetanus disease. Proc Natl Acad Sci U S A 100:1316–1321 [CrossRef]
    [Google Scholar]
  7. Canchaya C., Desiere F., McShan W. M., Ferretti J. J., Parkhill J., Brussow H. 2002; Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302:245–258 [CrossRef]
    [Google Scholar]
  8. Dove C. H., Wang S. Z., Price S. B., Phelps C. J., Lyerly D. M., Wilkins T. D., Johnson J. L. 1990; Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58:480–488
    [Google Scholar]
  9. Faust C., Ye B., Song K. P. 1998; The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Biochem Biophys Res Commun 251:100–105 [CrossRef]
    [Google Scholar]
  10. Freeman J., Wilcox M. H. 2003; The effects of storage conditions on viability of Clostridium difficile vegetative cells and spores and toxin activity in human faeces. J Clin Pathol 56:126–128 [CrossRef]
    [Google Scholar]
  11. Goh S., Riley T., Chang B. 2005; Isolation and characterization of temperate bacteriophages of Clostridium difficile . Appl Environ Microbiol (in press)
    [Google Scholar]
  12. Hammond G. A., Johnson J. L. 1995; The toxigenic element of Clostridium difficile strain VPI 10463. Microb Pathog 19:203–213 [CrossRef]
    [Google Scholar]
  13. Hammond G. A., Lyerly D. M., Johnson J. L. 1997; Transcriptional analysis of the toxigenic element of Clostridium difficile . Microb Pathog 22:143–154 [CrossRef]
    [Google Scholar]
  14. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C. 1997; Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile . Eur J Biochem 244:735–742 [CrossRef]
    [Google Scholar]
  15. Karcher S. J. 1995 Molecular Biology: a Project Approach San Diego: Academic Press;
    [Google Scholar]
  16. Karlsson S., Dupuy B., Mukherjee K., Norin E., Burman L. G., Akerlund T. 2003; Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71:1784–1793 [CrossRef]
    [Google Scholar]
  17. Kato N., Ou C. Y., Kato H., Bartley S. L., Brown V. K., Dowell V. R., Ueno K. 1991; Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol 29:33–37
    [Google Scholar]
  18. Kato H., Kato N., Watanbe K. & 7 other authors; 1998; Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36:2178–2182
    [Google Scholar]
  19. Ketley J. M., Haslam S. C., Mitchell T. J., Stephen J., Candy D. C., Burdon D. W. 1984; Production and release of toxins A and B by Clostridium difficile . J Med Microbiol 18:385–391 [CrossRef]
    [Google Scholar]
  20. Kutyavin I. V., Afonina I. A., Mills A. & 11 other authors; 2000; 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661 [CrossRef]
    [Google Scholar]
  21. Lyerly D. M., Lockwood D. E., Richardson S. H., Wilkins T. D. 1982; Biological activities of toxins A and B of Clostridium difficile . Infect Immun 35:1147–1150
    [Google Scholar]
  22. Lyerly D. M., Saum K. E., MacDonald D. K., Wilkins T. D. 1985; Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352
    [Google Scholar]
  23. Mahony D. E., Bell P. D., Easterbrook K. B. 1985; Two bacteriophages of Clostridium difficile . J Clin Microbiol 21:251–254
    [Google Scholar]
  24. Mahony D. E., Gilliatt E., Dawson S., Stockdale E., Lee S. H. 1989; Vero cell assay for rapid detection of Clostridium perfringens enterotoxin. Appl Environ Microbiol 55:2141–2143
    [Google Scholar]
  25. Mani N., Dupuy B. 2001; Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98:5844–5849 [CrossRef]
    [Google Scholar]
  26. Mani N., Lyras D., Barroso L., Howarth P., Wilkins T., Rood J. I., Sonenshein A. L., Dupuy B. 2002; Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184:5971–5978 [CrossRef]
    [Google Scholar]
  27. Mukherjee K., Karlsson S., Burman L. G., Akerlund T. 2002; Proteins released during high toxin production in Clostridium difficile . Microbiology 148:2245–2253
    [Google Scholar]
  28. Nagy E., Foldes J. 1991; Electron microscopic investigation of lysogeny of Clostridium difficile strains isolated from antibiotic-associated diarrhea cases and from healthy carriers. APMIS 99:321–326 [CrossRef]
    [Google Scholar]
  29. Pfeifer G., Schirmer J., Leemhuis J., Busch C., Meyer D. K., Aktories K., Barth H. 2003; Cellular uptake of Clostridium difficile toxin B: translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278:44535–44541 [CrossRef]
    [Google Scholar]
  30. Proux C., van Sinderen D., Suarez J., Garcia P., Ladero V., Fitzgerald G. F., Desiere F., Brussow H. 2002; The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J Bacteriol 184:6026–6036 [CrossRef]
    [Google Scholar]
  31. Riley T. V., O'Neill G. L., Bowman R. A., Golledge C. L. 1994; Clostridium difficile -associated diarrhoea: epidemiological data from Western Australia. Epidemiol Infect 113:13–20 [CrossRef]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Tan K. S., Wee B. Y., Song K. P. 2001; Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile . J Med Microbiol 50:613–619
    [Google Scholar]
  34. Wang I. N., Smith D. L., Young R. 2000; Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825 [CrossRef]
    [Google Scholar]
  35. Wang I. N., Deaton J., Young R. 2003; Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J Bacteriol 185:779–787 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45821-0
Loading
/content/journal/jmm/10.1099/jmm.0.45821-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error