1887

Abstract

colonizes the gastrointestinal tract of humans; however, little is known about the features of commensal strains. This study investigated whether expression of the biofilm extracellular matrix components cellulose and curli fimbriae is found among commensal isolates. Fifty-two strains were isolated from faecal samples and, as a control, 24 strains from urinary tract infections were also used. Faecal isolates were characterized by serotyping and phylogenetically grouped by PCR. The genotype was determined by PFGE and the presence of virulence factors was assessed. Co-expression of cellulose and curli fimbriae at 28 °C and 37 °C was typical for faecal isolates, while urinary tract infection strains typically expressed the extracellular matrix components at 28 °C only. Knockout studies in a representative faecal isolate revealed that the response regulator CsgD regulated cellulose and curli fimbriae, as found previously in . In contrast to , at 37 °C pellicle formation occurred in the absence of cellulose and curli fimbriae. The gastrointestinal tract represents a source of biofilm-forming bacteria, which can spread to susceptible sites.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46064-0
2005-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541209.html?itemId=/content/journal/jmm/10.1099/jmm.0.46064-0&mimeType=html&fmt=ahah

References

  1. Austin J. W., Sanders G., Kay W. W., Collinson S. K. 1998; Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1994 Current Protocols in Molecular Biology Washington, DC: Wiley;
    [Google Scholar]
  3. Berg R. D. 1999; Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30
    [Google Scholar]
  4. Bettelheim K. A., Breadon A., Faiers M. C., O'Farrell S. M., Shooter R. A. 1974; The origin of O serotypes of Escherichia coli in babies after normal delivery. J Hyg (Lond) 72:67–70 [CrossRef]
    [Google Scholar]
  5. Bian Z., Brauner A., Li Y., Normark S. 2000; Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181:602–612 [CrossRef]
    [Google Scholar]
  6. Bloch C. A., Orndorff P. E. 1990; Impaired colonization by and full invasiveness of Escherichia coli K1 bearing a site-directed mutation in the type 1 pilin gene. Infect Immun 58:275–278
    [Google Scholar]
  7. Blomfield I. C. 2001; The regulation of pap and type 1 fimbriation in Escherichia coli . Adv Microb Physiol 45:1–49
    [Google Scholar]
  8. Boudeau J., Barnich N., Darfeuille-Michaud A. 2001; Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol 39:1272–1284 [CrossRef]
    [Google Scholar]
  9. Brauner A., Kaijser B., Wretlind B., Kuhn I. 1991; Characterization of Escherichia coli isolated in blood, urine and faeces from bacteraemic patients and possible spread of infection. APMIS 99:381–386 [CrossRef]
    [Google Scholar]
  10. Cassels F. J., Wolf M. K. 1995; Colonization factors of diarrheagenic E.coli and their intestinal receptors. J Ind Microbiol 15:214–226 [CrossRef]
    [Google Scholar]
  11. Chadwick V. S., Chen W. 1999; The intestinal microflora and inflammatory bowel disease. In Medical Importance of the Normal Microflora pp 177–221 Edited by Tannock G. W. Dordrecht: Kluwer;
    [Google Scholar]
  12. Clermont O., Bonacorsi S., Bingen E. 2000; Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558 [CrossRef]
    [Google Scholar]
  13. Collinson S. K., Emody L., Muller K. H., Trust T. J., Kay W. W. 1991; Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis . J Bacteriol 173:4773–4781
    [Google Scholar]
  14. Cooke E. M., Ewins S. P. 1975; Properties of strains of Escherichia coli isolated from a variety of sources. J Med Microbiol 8:107–111 [CrossRef]
    [Google Scholar]
  15. Cookson A. L., Cooley W. A., Woodward M. J. 2002; The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292:195–205 [CrossRef]
    [Google Scholar]
  16. Darfeuille-Michaud A., Neut C., Barnich N. & 7 other authors; 1998; Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115:1405–1413 [CrossRef]
    [Google Scholar]
  17. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  18. Duriez P., Clermont O., Bonacorsi S., Bingen E., Chaventre A., Elion J., Picard B., Denamur E. 2001; Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology 147:1671–1676
    [Google Scholar]
  19. Gerstel U., Römling U. 2003; The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium . Res Microbiol 154:659–667 [CrossRef]
    [Google Scholar]
  20. Gophna U., Barlev M., Seijffers R., Oelschlager T. A., Hacker J., Ron E. Z. 2001; Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665 [CrossRef]
    [Google Scholar]
  21. Guarner F., Malagelada J. R. 2003; Gut flora in health and disease. Lancet 361:512–519 [CrossRef]
    [Google Scholar]
  22. Hammar M., Arnqvist A., Bian Z., Olsen A., Normark S. 1995; Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670 [CrossRef]
    [Google Scholar]
  23. Hartl D. L., Dykhuizen D. E. 1984; The population genetics of Escherichia coli . Annu Rev Genet 18:31–68 [CrossRef]
    [Google Scholar]
  24. Herwald H., Morgelin M., Olsen A., Rhen M., Dahlback B., Muller-Esterl W., Bjorck L. 1998; Activation of the contact-phase system on bacterial surfaces – a clue to serious complications in infectious diseases. Nat Med 4:298–302 [CrossRef]
    [Google Scholar]
  25. Johnson J. R., Brown J. J., Carlino U. B., Russo T. A. 1998; Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. J Infect Dis 177:1120–1124 [CrossRef]
    [Google Scholar]
  26. Leclerc H., Mossel D. A., Edberg S. C., Struijk C. B. 2001; Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234 [CrossRef]
    [Google Scholar]
  27. McCormick B. A., Franklin D. P., Laux D. C., Cohen P. S. 1989; Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E.coli K-12. Infect Immun 57:3022–3029
    [Google Scholar]
  28. Nowrouzian F., Adlerberth I., Wold A. E. 2001; P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli . Epidemiol Infect 126:11–18
    [Google Scholar]
  29. O'Boyle C. J., MacFie J., Mitchell C. J., Johnstone D., Sagar P. M., Sedman P. C. 1998; Microbiology of bacterial translocation in humans. Gut 42:29–35 [CrossRef]
    [Google Scholar]
  30. Olsen A., Jonsson A., Normark S. 1989; Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli . Nature 338:652–655 [CrossRef]
    [Google Scholar]
  31. Olsen A., Arnqvist A., Hammar M., Sukupolvi S., Normark S. 1993; The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA , the subunit gene of fibronectin-binding curli in Escherichia coli . Mol Microbiol 7:523–536 [CrossRef]
    [Google Scholar]
  32. Olsen A., Herwald H., Wikstrom M., Persson K., Mattsson E., Bjorck L. 2002; Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli . J Biol Chem 277:34568–34572 [CrossRef]
    [Google Scholar]
  33. Orskov F. 1978; Virulence factors of the bacterial cell surface. J Infect Dis 137:630–633 [CrossRef]
    [Google Scholar]
  34. Patri E., Szabo E., Pal T., Emödy L. 2000; Thin aggregative fimbriae on urinary Escherichia coli isolates. In Genes and Proteins Underlying Microbial Urinary Tract Virulence pp 219–224 Edited by Emödy L. Dordrecht: Kluwer/Plenum;
    [Google Scholar]
  35. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [CrossRef]
    [Google Scholar]
  36. Römling U. 2001; Genetic and phenotypic analysis of multicellular behavior in Salmonella typhimurium . Methods Enzymol 336:48–59
    [Google Scholar]
  37. Römling U., Fiedler B., Bosshammer J., Grothues D., Greipel J., von der Hardt H., Tummler B. 1994; Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170:1616–1621 [CrossRef]
    [Google Scholar]
  38. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. 1998a; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  39. Römling U., Sierralta W. D., Eriksson K., Normark S. 1998b; Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264 [CrossRef]
    [Google Scholar]
  40. Römling U., Rohde M., Olsen A., Normark S., Reinköster J. 2000; AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23 [CrossRef]
    [Google Scholar]
  41. Römling U., Bokranz W., Rabsch W., Zogaj X., Nimtz M., Tschäpe H. 2003; Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol 293:273–285 [CrossRef]
    [Google Scholar]
  42. Sakellaris H., Hannink N. K., Rajakumar K., Bulach D., Hunt M., Sasakawa C., Adler B. 2000; Curli loci of Shigella spp. Infect Immun 68:3780–3783 [CrossRef]
    [Google Scholar]
  43. Sjöbring U., Pohl G., Olsen A. 1994; Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol Microbiol 14:443–452 [CrossRef]
    [Google Scholar]
  44. Struelens M. J. 1996; Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11 [CrossRef]
    [Google Scholar]
  45. Sukurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu Z.-R., Krogfeld K. A., Struve C., Schembri M. A., Hasty D. L. 1998; Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95:8922–8926 [CrossRef]
    [Google Scholar]
  46. Uhlich G. A., Keen J. E., Elder R. O. 2001; Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157 : H7. Appl Environ Microbiol 67:2367–2370 [CrossRef]
    [Google Scholar]
  47. Uhlich G. A., Keen J. E., Elder R. O. 2002; Variations in the csgD promoter of Escherichia coli O157 : H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infect Immun 70:395–399 [CrossRef]
    [Google Scholar]
  48. Updegraff D. M. 1969; Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424 [CrossRef]
    [Google Scholar]
  49. Wang X., Preston J. F. III, Romeo T. 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734 [CrossRef]
    [Google Scholar]
  50. Wold A. E., Caugant D. A., Lidin-Janson G., de Man P., Svanborg C. 1992; Resident colonic Escherichia coli strains frequently display uropathogenic characteristics. J Infect Dis 165:46–52 [CrossRef]
    [Google Scholar]
  51. Zogaj X., Nimtz M., Rohde M., Bokranz W., Römling U. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463 [CrossRef]
    [Google Scholar]
  52. Zogaj X., Bokranz W., Nimtz M., Römling U. 2003; Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46064-0
Loading
/content/journal/jmm/10.1099/jmm.0.46064-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error