1887

Abstract

is the commonest cause of antibiotic-associated diarrhoea, with the hospitalized elderly being at particular risk. The organism makes a crystalline surface protein layer (S-layer), encoded by the gene, the product of which is cleaved to give two mature peptides which associate to form the layer. The larger peptide (high molecular weight; HMW), derived from the C-terminal portion of the precursor, is relatively conserved, whereas the smaller peptide (low molecular weight; LMW), derived from the N-terminal portion of the precursor, is a dominant antigen which substantially forms the basis for serotyping of isolates. PCR ribotyping is a more discriminatory typing method, based on the intergenic rRNA. We obtained the sequence for and some flanking DNA from a collection of strains of 14 ribotypes isolated from elderly patients. Sequences from different ribotypes were compared with one another and with published sequences. Sequences from ribotypes 046 and 092 were identical. Sequences from ribotype pairs 005 and 054, 012 and 046/092, 014 and 066 and 031 and 094 differed by 1–3 nt in the gene. There were ultimately nine ribotypes or groups of ribotypes with very different sequences, particularly in the region encoding the LMW peptide. The sequence from ribotype 002 was very different from previously published sequences. The DNA segment sequenced included the 5′ 315 bp of a homologue, encoding a putative transport protein required for peptide secretion across the plasma membrane. The amino acid sequences of the predicted HMW peptides were aligned and a neighbour-joining tree was produced using 10 000 bootstrap replicates. The predicted SecA N-terminal region was similarly analysed. For both SlpA and SecA, a strong association was found between ribotypes 012, 046/092, 017, 031 and 094. Ribotypes 001 and 078 formed part of this clade for SlpA but not SecA, indicating independent evolution for and , presumably because they come under different selection pressures.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46204-0
2006-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/1/69.html?itemId=/content/journal/jmm/10.1099/jmm.0.46204-0&mimeType=html&fmt=ahah

References

  1. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  2. Brazier J. S. 1998; The epidemiology and typing of Clostridium difficile . J Antimicrob Chemother 41 (Suppl. C):47–57
    [Google Scholar]
  3. Brazier J. S. 2001; Typing of Clostridium difficile . Clin Microbiol Infect 7:428–431 [CrossRef]
    [Google Scholar]
  4. Brendel V., Trifonov E. N. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12:4411–4427 [CrossRef]
    [Google Scholar]
  5. Calabi E., Fairweather N. 2002; Patterns of sequence conservation in the S-layer proteins and related sequences in Clostridium difficile . J Bacteriol 184:3886–3897 [CrossRef]
    [Google Scholar]
  6. Calabi E., Ward S., Wren B., Paxton T., Panico M., Morris H., Dell A., Dougan G., Fairweather N. 2001; Molecular characterization of the surface layer proteins from Clostridium difficile . Mol Microbiol 40:1187–1199 [CrossRef]
    [Google Scholar]
  7. Cerquetti M., Molinari A., Sebastianelli A., Diociaiuti M., Petruzzelli R., Capo C., Mastrantonio P. 2000; Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 28:363–372 [CrossRef]
    [Google Scholar]
  8. Chu S., Trust T. J. 1993; An Aeromonas salmonicida gene which influences A-protein expression in Escherichia coli encodes a protein containing an ATP-binding cassette and maps beside the surface array protein gene. J Bacteriol 175:3105–3114
    [Google Scholar]
  9. Combet C., Blanchet C., Geourjon C., Deleage G. 2000; NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150 [CrossRef]
    [Google Scholar]
  10. Deléage G., Roux B. 1987; An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1:289–294 [CrossRef]
    [Google Scholar]
  11. Delmée M., Laroche Y., Avesani V., Cornelis G. 1986; Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile . J Clin Microbiol 24:991–994
    [Google Scholar]
  12. Delmée M., Avesani V., Delferriere N., Burtonboy G. 1990; Characterization of flagella of Clostridium difficile and their role in serogrouping reactions. J Clin Microbiol 28:2210–2214
    [Google Scholar]
  13. Doyle R. M. 2004; Humoral immune response to Clostridium difficile associated disease . MD thesis Trinity College Dublin; Ireland:
  14. Fekkes P., van der Does C., Driessen A. J. 1997; The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:6105–6113 [CrossRef]
    [Google Scholar]
  15. Frishman D., Argos P. 1996; Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 9:133–142 [CrossRef]
    [Google Scholar]
  16. Garnier J., Gibrat J. F., Robson B. 1996; gor method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553
    [Google Scholar]
  17. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. 2003; ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788 [CrossRef]
    [Google Scholar]
  18. Geourjon C., Deléage G. 1994; sopm: a self-optimized method for protein secondary structure prediction. Protein Eng 7:157–164 [CrossRef]
    [Google Scholar]
  19. Guermeur Y. 1997; Combinaison de classifieurs statistiques, application à la prédiction de structure sécondaire des protéines . PhD thesis Université Paris 6, France: (in French)
  20. Heger A., Holm L. 2000; Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41:224–237 [CrossRef]
    [Google Scholar]
  21. Henkin T. M. 1996; Control of transcription termination in prokaryotes. Annu Rev Genet 30:35–57 [CrossRef]
    [Google Scholar]
  22. Karjalainen T., Waligora-Dupriet A. J., Cerquetti M., Spigaglia P., Maggioni A., Mauri P., Mastrantonio P. 2001; Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile . Infect Immun 69:3442–3446 [CrossRef]
    [Google Scholar]
  23. Karjalainen T., Saumier N., Barc M. C., Delmée M., Collignon A. 2002; Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative to serotyping. J Clin Microbiol 40:2452–2458 [CrossRef]
    [Google Scholar]
  24. Kelly C. P., LaMont J. T. 1998; Clostridium difficile infection. Annu Rev Med 49:375–390 [CrossRef]
    [Google Scholar]
  25. King R. D., Sternberg M. J. E. 1996; Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5:2298–2310 [CrossRef]
    [Google Scholar]
  26. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  27. Kyne L., Hamel M. B., Polavaram R., Kelly C. P. 2002; Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile . Clin Infect Dis 34:346–353 [CrossRef]
    [Google Scholar]
  28. Lenz L. L., Mohammadi S., Geissler A., Portnoy D. A. 2003; SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437 [CrossRef]
    [Google Scholar]
  29. Levin J. M. 1997; Exploring the limits of nearest neighbour secondary structure prediction. Protein Eng 10:771–776 [CrossRef]
    [Google Scholar]
  30. O'Neill G. L., Ogunsola F. T., Brazier J. S., Duerden B. I. 1996; Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile . Anaerobe 2:205–209 [CrossRef]
    [Google Scholar]
  31. Pallen M. J., Chaudhuri R. R., Henderson I. R. 2003; Genomic analysis of secretion systems. Curr Opin Microbiol 6:519–527 [CrossRef]
    [Google Scholar]
  32. Pantosti A., Cerquetti M., Viti F., Ortisi G., Mastrantonio P. 1989; Immunoblot analysis of serum immunoglobulin G response to surface proteins of Clostridium difficile in patients with antibiotic-associated diarrhea. J Clin Microbiol 27:2594–2597
    [Google Scholar]
  33. Poxton I. R., Higgins P. G., Currie C. G., McCoubrey J. 1999; Variation in the cell surface proteins of Clostridium difficile . Anaerobe 5:213–215 [CrossRef]
    [Google Scholar]
  34. Pum D., Neubauer A., Gyorvary E., Sára M., Sleytr U. B. 2000; S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology 11:100–107 [CrossRef]
    [Google Scholar]
  35. Rost B., Sander C. 1994; Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72 [CrossRef]
    [Google Scholar]
  36. Sára M., Sleytr U. B. 2000; S-layer proteins. J Bacteriol 182:859–868 [CrossRef]
    [Google Scholar]
  37. Schäffer C., Messner P. 2001; Glycobiology of surface layer proteins. Biochimie 83:591–599 [CrossRef]
    [Google Scholar]
  38. Schmidt M. G., Kiser K. B. 1999; SecA: the ubiquitous component of preprotein translocase in prokaryotes. Microbes Infect 1:993–1004 [CrossRef]
    [Google Scholar]
  39. Schmidt M. A., Riley L. W., Benz I. 2003; Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol 11:554–561 [CrossRef]
    [Google Scholar]
  40. Seidah N. G., Chrétien M. 1999; Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62 [CrossRef]
    [Google Scholar]
  41. Sleytr U. B., Messner P. 1983; Crystalline surface layers on bacteria. Annu Rev Microbiol 37:311–339 [CrossRef]
    [Google Scholar]
  42. Sleytr U. B., Thorne K. J. 1976; Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum . J Bacteriol 126:377–383
    [Google Scholar]
  43. Sleytr U. B., Messner P., Pum D., Sára M. 1999; Crystalline bacterial cell surface layers (S layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed Engl 38:1035–1054
    [Google Scholar]
  44. Spiro R. G. 2002; Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R [CrossRef]
    [Google Scholar]
  45. Stubbs S. L., Brazier J. S., O'Neill G. L., Duerden B. I. 1999; PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  47. van Wely K. H., Swaving J., Freudl R., Driessen A. J. 2001; Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454 [CrossRef]
    [Google Scholar]
  48. Vermat T., Vandenbrouck Y., Viari A., d'Aubenton Carafa Y. 2002; Prediction, distribution and evolution of intrinsic transcription terminators in bacterial genomes. In JOBIM 2002 pp  137–142 Edited by Nicolas J., Thermes C. Rennes: IMPG;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46204-0
Loading
/content/journal/jmm/10.1099/jmm.0.46204-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error