1887

Abstract

In order to investigate the interplay occurring between pathogens in the course of double infections, an model was set up in which the monocytic cell line THP-1 was exposed to () and human herpesvirus 6 (HHV-6). and HHV-6, both highly neurotropic, can cause serious diseases of the central nervous system and have monocytes, among other cell types, as target cells, causing alteration of their secretion pattern. Here, it was shown that unlike THP-1 cells exposed to cell-free virus inocula, THP-1 exposed to HHV-6-producing lymphocytes exhibited augmented phagocytosis against . The phenomenon occurred after 24 h of monocyte/lymphocyte co-culture and was independent of direct cell-to-cell contact. Moreover, in the presence of HHV-6, THP-1 cells expressed enhanced secretory responses but reduced capability to counteract fungal infection: the enhanced ingestion by monocytes was followed by facilitated fungal survival and replication. These data provide initial evidence that HHV-6 may dysregulate monocyte-mediated anticryptococcal defences with an overall pro-cryptococcus result.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46496-0
2006-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/6/695.html?itemId=/content/journal/jmm/10.1099/jmm.0.46496-0&mimeType=html&fmt=ahah

References

  1. Arena A., Liberto M. C., Iannello D., Capozza A. B., Foca A. 1999; Altered cytokine production after human herpes virus type 6 infection. New Microbiol 22:293–300
    [Google Scholar]
  2. Arena A., Stassi G., Speranza A., Iannello D., Mastroeni P. 2002; Modulatory effect of HHV-6 on MCP-1 production by human monocytes. New Microbiol 25:335–340
    [Google Scholar]
  3. Blasi E., Barluzzi R., Bocchini V., Mazzolla R., Bistoni F. 1990; Immortalization of murine microglial cells by a v- raf /v- myc carrying retrovirus. J Neuroimmunol 27:229–237 [CrossRef]
    [Google Scholar]
  4. Blasi E., Barluzzi R., Mazzolla R., Pitzurra L., Puliti M., Saleppico S., Bistoni F. 1995; Biomolecular events involved in anticryptococcal resistance in the brain. Infect Immun 63:1218–1222
    [Google Scholar]
  5. Blasi E., Colombari B., Mucci A., Cossarizza A., Radzioch D., Boelaert J. R., Neglia R. 2001a; Nramp1 gene affects selective early steps in macrophage-mediated anti-cryptococcal defense. Med Microbiol Immunol 189:209–216 [CrossRef]
    [Google Scholar]
  6. Blasi E., Brozzetti A., Francisci D., Neglia R., Cardinali G., Bistoni F., Vidotto V., Baldelli F. 2001b; Evidence of microevolution in a clinical case of recurrent Cryptococcus neoformans meningoencephalitis. Eur J Clin Microbiol Infect Dis 20:535–543 [CrossRef]
    [Google Scholar]
  7. Caruso A., Rotola A., Comar M. & 10 other authors; 2002; HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. J Med Virol 67:528–533 [CrossRef]
    [Google Scholar]
  8. Caruso A., Favilli F., Rotola A., Comar M., Horejsh D., Alessandri G., Grassi M., Di Luca D., Fiorentini S. 2003; Human herpesvirus-6 modulates RANTES production in primary human endothelial cell cultures. J Med Virol 70:451–458 [CrossRef]
    [Google Scholar]
  9. Cermelli C., Moroni A., Pietrosemoli P., Pecorari M., Portolani M. 1992; IgG antibodies to human herpesvirus-6 (HHV-6) in Italian people. Microbiologica 15:57–63
    [Google Scholar]
  10. De Bolle L., Naesens L., De Clercq E. 2005; Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18:217–245 [CrossRef]
    [Google Scholar]
  11. Dewhurst S. 2004; Human herpesvirus type 6 and human herpesvirus type 7 infections of the central nervous system. Herpes 2:105A–111A
    [Google Scholar]
  12. Downing R. G., Sewankambo N., Serwadda D., Honess R., Crawford D., Jarrett R., Griffin B. E. 1987; Isolation of human lymphotropic herpesviruses from Uganda. Lancet 2:390
    [Google Scholar]
  13. Flamand L., Gosselin J., Stefanescu I., Ablashi D., Menezes J. 1995; Immunosuppressive effect of human herpesvirus 6 on T-cell functions: suppression of interleukin-2 synthesis and cell proliferation. Blood 85:1263–1271
    [Google Scholar]
  14. Fonseca E. M., Nuno F. J., Garcia-Alcalde M. L., Menendez M. J. 2003; Infection due to herpes zoster and cryptococcus after initiating high-activity antiretroviral treatment. Enferm Infecc Microbiol Clin 21:217–218 [CrossRef]
    [Google Scholar]
  15. Goldman D., Song X., Kitai R., Casadevall A., Zhao M. L., Lee S. C. 2001; Cryptococcus neoformans induces macrophage inflammatory protein 1 α (MIP-1 α ) and MIP-1 β in human microglia: role of specific antibody and soluble capsular polysaccharide. Infect Immun 69:1808–1815 [CrossRef]
    [Google Scholar]
  16. Inoue Y., Yasukawa M., Fujita S. 1997; Induction of T-cell apoptosis by human herpesvirus 6. J Virol 71:3751–3759
    [Google Scholar]
  17. Karino T., Nakamura J., Fujita K., Kobashi Y., Yano T., Okimoto N., Soejima R. 1998; A case with chronic active EB virus infection accompanied with pulmonary candidiasis. Kansenshogaku Zasshi 72:1306–1310 (in Japanese [CrossRef]
    [Google Scholar]
  18. Kawakami K., Qureshi M. H., Koguchi Y., Nakajima K., Saito A. 1999; Differential effect of Cryptococcus neoformans on the production of IL-12p40 and IL-10 by murine macrophages stimulated with lipopolysaccharide and gamma interferon. FEMS Microbiol Lett 175:87–94 [CrossRef]
    [Google Scholar]
  19. Kawakami K., Koguchi Y., Qureshi M. H., Yara S., Kinjo Y., Uezu K., Saito A. 2000; NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol Immunol 44:1043–1050 [CrossRef]
    [Google Scholar]
  20. Kobayashi T. K., Ueda M., Nishino T., Moritani S., Higaki T., Bamba M. 2003; Cytologic detection of cryptococcosis coexisting with herpes simplex virus infection in sputum: use of liquid-based, thin-layer preparations. Acta Cytol 47:103–106
    [Google Scholar]
  21. Langermans J. A., Hazenbons W. L., van Furth R. 1994; Antimicrobial functions of mononuclear phagocytes. J Immunol Methods 174:185–194 [CrossRef]
    [Google Scholar]
  22. Levitz S. M. 2001; Cryptococcus neoformans : intracellular or extracellular?. Trends Microbiol 9:417–418 [CrossRef]
    [Google Scholar]
  23. Li C., Goodrich J. M., Yang X. 1997; Interferon-gamma (IFN-gamma) regulates production of IL-10 and IL-12 in human herpesvirus-6 (HHV-6)-infected monocyte/macrophage lineage. Clin Exp Immunol 109:421–425 [CrossRef]
    [Google Scholar]
  24. Lusso P., Markham P. D., Tschachler E., di Marzo Veronese F., Salahuddin S. Z., Ablashi D. V., Pahwa S., Krohn K., Gallo R. C. 1988; In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J Exp Med 167:1659–1670 [CrossRef]
    [Google Scholar]
  25. Marti Cabane J., Alvarez Rubio M. 2004; Herpes simplex esophagitis associated to Candida albicans in an immunocompetent host. An Med Interna 21:312
    [Google Scholar]
  26. Mayne M., Cheadle C., Soldan S. S. & 7 other authors; 2001; Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. J Virol 75:11641–11650 [CrossRef]
    [Google Scholar]
  27. Meeuwsen S., Persoon-Deen C., Bsibsi M., Bajramovic J. J., Ravid R., De Bolle L., Van Noort J. M. 2005; Modulation of the cytokine network in human adult astrocytes by human herpesvirus-6A. J Neuroimmunol 164:37–47 [CrossRef]
    [Google Scholar]
  28. Milne R. S., Mattick C., Nicholson L., Devaraj P., Alcami A., Gompels U. A. 2000; RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol 164:2396–2404 [CrossRef]
    [Google Scholar]
  29. Modalsli K., Bukholm G., Degre M. 1992; Interferon treatment reduced adherence, invasiveness and intracellular multiplication of Shigella flexneri in coxsackie B1 virus-infected cells. J Biol Regul Homeost Agents 6:35–45
    [Google Scholar]
  30. Mucci A., Varesio L., Neglia R., Colombari B., Pastorino S., Blasi E. 2003; Antifungal activity of macrophages engineered to produce IFNgamma: inducibility by picolinic acid. Med Microbiol Immunol 192:71–78
    [Google Scholar]
  31. Nathan C. F. 1987; Secretory products of macrophages. J Clin Invest 79:319–326 [CrossRef]
    [Google Scholar]
  32. Netea M. G., Van der Graaf C., Van der Meer J. W., Kullberg B. J. 2004; Recognition of fungal pathogens by toll-like receptors. Eur J Clin Microbiol Infect Dis 23:672–676
    [Google Scholar]
  33. Oster B., Bundgaard B., Hollsberg P. 2005; Human herpesvirus 6B induces cell cycle arrest concomitant with p53 phosphorylation and accumulation in T cells. J Virol 79:1961–1965 [CrossRef]
    [Google Scholar]
  34. Rathman M., Sjaastad M. D., Falkow S. 1996; Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 64:2765–2773
    [Google Scholar]
  35. Retini C., Casadevall A., Pietrella D., Monari C., Palazzetti B., Vecchiarelli A. 1999; Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans . J Immunol 162:1618–1623
    [Google Scholar]
  36. Roeder A., Kirschning C. J., Rupec R. A., Schaller M., Weindl G., Korting H. C. 2004; Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol 42:485–498 [CrossRef]
    [Google Scholar]
  37. Rogers J., Rohal S., Carrigan D. R., Kusne S., Knox K. K., Gayowski T., Wagener M. M., Fung J. J., Singh N. 2000; Human herpesvirus-6 in liver transplant recipients: role in pathogenesis of fungal infections, neurologic complications, and outcome. Transplantation 69:2566–2573 [CrossRef]
    [Google Scholar]
  38. Russell D. G. 1994; Immunoelectron microscopy of endosomal trafficking in macrophages infected with microbial pathogens. Methods Cell Biol 45:277–288
    [Google Scholar]
  39. Salahuddin S. Z., Ablashi D. V., Markham P. D. & 8 other authors; 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601 [CrossRef]
    [Google Scholar]
  40. Siren J., Pirhonen J., Julkunen I., Matikainen S. 2005; IFN- α regulates TLR-dependent gene expression of IFN- α , IFN- β , IL-28, and IL-29. J Immunol 174:1932–1937 [CrossRef]
    [Google Scholar]
  41. Smith A., Santoro F., Di Lullo G., Dagna L., Verani A., Lusso P. 2003; Selective suppression of IL-12 production by human herpesvirus 6. Blood 102:2877–2884 [CrossRef]
    [Google Scholar]
  42. Smith A. P., Paolucci C., Di Lullo G., Burastero S. E., Santoro F., Lusso P. 2005; Viral replication-independent blockade of dendritic cell maturation and interleukin-12 production by human herpesvirus 6. J Virol 79:2807–2813 [CrossRef]
    [Google Scholar]
  43. Tardieux I., Webster P., Ravesloot J., Boron W., Lunn J. A., Heuser J. E., Andrews N. W. 1992; Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71:1117–1130 [CrossRef]
    [Google Scholar]
  44. Trinchieri G. 1997; Function and clinical use of interleukin-12. Curr Op Hematol 4:59–66 [CrossRef]
    [Google Scholar]
  45. Tucker S. C., Casadevall A. 2002; Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci U S A 99:3165–3170 [CrossRef]
    [Google Scholar]
  46. Uicker W. C., Doyle H. A., McCracken J. P., Langlois M., Buchanan K. L. 2005; Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans . Med Mycol 43:27–38
    [Google Scholar]
  47. Váquez-Torres A., Balish E. 1997; Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 61:170–192
    [Google Scholar]
  48. Vuorinen T., Kotilainen P., Lautenschlager I., Kujari H., Krogerus L., Oksi J. 2004; Interstitial pneumonitis and coinfection of human herpesvirus 6 and Pneumocystis carinii in a patient with hypogammaglobulinemia. J Clin Microbiol 42:5415–5418 [CrossRef]
    [Google Scholar]
  49. Ward K. N. 2005; The natural history and laboratory diagnosis of human herpesviruses-6 and -7 infections in the immunocompetent. J Clin Virol 32:183–193 [CrossRef]
    [Google Scholar]
  50. Weinberg A., Bloch K. C., Li S., Tang Y. W., Palmer M., Tyler K. L. 2005; Dual infections of the central nervous system with Epstein–Barr virus. J Infect Dis 191:234–237 [CrossRef]
    [Google Scholar]
  51. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet 1:1065–1067
    [Google Scholar]
  52. Yoshikawa T., Asano Y., Akimoto S., Ozaki T., Iwasaki T., Kurata T., Goshima F., Nishiyama Y. 2002; Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J Med Virol 66:497–505 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46496-0
Loading
/content/journal/jmm/10.1099/jmm.0.46496-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error